Karin Kirschner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289192/publications.pdf Version: 2024-02-01

KADIN KIDSCHNED

#	Article	IF	CITATIONS
1	A splice variant of the Wilms' tumour suppressor <i>Wt1</i> is required for normal development of the olfactory system. Development (Cambridge), 2005, 132, 1327-1336.	2.5	80
2	Hypoxia-inducible Factor-1 (HIF-1) Is a Transcriptional Activator of the TrkB Neurotrophin Receptor Gene. Journal of Biological Chemistry, 2007, 282, 14379-14388.	3.4	73
3	Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood, 2006, 107, 4282-4290.	1.4	71
4	Translational Regulation of the Human Achaete-scute Homologue-1 by Fragile X Mental Retardation Protein. Journal of Biological Chemistry, 2009, 284, 4255-4266.	3.4	51
5	The Wilms Tumor Suppressor Wt1 Promotes Cell Adhesion through Transcriptional Activation of the α <i>4integrin</i> Gene. Journal of Biological Chemistry, 2006, 281, 31930-31939.	3.4	42
6	Wilms' tumor protein (—KTS) modulates renin gene transcription. Kidney International, 2008, 74, 458-466.	5.2	32
7	Transcriptional Regulation by the Wilms Tumor Protein, Wt1, Suggests a Role of the Metalloproteinase Adamts16 in Murine Genitourinary Development. Journal of Biological Chemistry, 2013, 288, 18811-18824.	3.4	30
8	Oxygen-Dependent Gene Expression in Development and Cancer: Lessons Learned from the Wilms' Tumor Gene, WT1. Frontiers in Molecular Neuroscience, 2011, 4, 4.	2.9	23
9	The Wilms' tumor suppressor Wt1 activates transcription of the erythropoietin receptor in hematopoietic progenitor cells. FASEB Journal, 2008, 22, 2690-2701.	0.5	21
10	Amine Oxidase Copper-containing 1 (AOC1) Is a Downstream Target Gene of the Wilms Tumor Protein, WT1, during Kidney Development. Journal of Biological Chemistry, 2014, 289, 24452-24462.	3.4	21
11	Wilms' tumor protein Wt1 regulates the Interleukinâ€10 (ILâ€10) gene. FEBS Letters, 2010, 584, 4665-4671.	. 2.8	15
12	Ex vivo cultures combined with vivo-morpholino induced gene knockdown provide a system to assess the role of WT1 and GATA4 during gonad differentiation. PLoS ONE, 2017, 12, e0176296.	2.5	13
13	A dual role of miRâ€⊋2 in rhabdomyolysisâ€induced acute kidney injury. Acta Physiologica, 2018, 224, e13102.	3.8	12
14	Nuclear Transport of Wilms′ Tumour Protein Wt1 Involves Importins α and β. Cellular Physiology and Biochemistry, 2012, 29, 223-232.	1.6	11
15	Wilms tumor protein–dependent transcription of VEGF receptor 2 and hypoxia regulate expression of the testis-promoting gene Sox9 in murine embryonic gonads. Journal of Biological Chemistry, 2017, 292, 20281-20291.	3.4	11
16	Wilms' tumour protein Wt1 stimulates transcription of the gene encoding vascular endothelial cadherin. Pflugers Archiv European Journal of Physiology, 2010, 460, 1051-1061.	2.8	10
17	The GYF domain protein CD2BP2 is critical for embryogenesis and podocyte function. Journal of Molecular Cell Biology, 2015, 7, 402-414.	3.3	9
18	Deletion of an intronic HIF-2α binding site suppresses hypoxia-induced WT1 expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 71-83.	1.9	9

KARIN KIRSCHNER

#	Article	IF	CITATIONS
19	Immunosuppressive calcineurin inhibitor cyclosporine AÂinduces proapoptotic endoplasmic reticulum stress in renal tubular cells. Journal of Biological Chemistry, 2022, 298, 101589.	3.4	7
20	Reduce, replace, refine—Animal experiments. Acta Physiologica, 2021, 233, e13726.	3.8	6
21	The Wilms tumor protein WT1 stimulates transcription of the gene encoding insulin-like growth factor binding protein 5 (IGFBP5). Gene, 2017, 619, 21-29.	2.2	5
22	ExActa HIF prolyl hydroxylase inhibitors—The new lifestyle drug?. Acta Physiologica, 2019, 227, e13370.	3.8	4
23	The circadian clock regulates rhythmic erythropoietin expression in the murine kidney. Kidney International, 2021, 100, 1071-1080.	5.2	4
24	WT1 in Adipose Tissue: From Development to Adult Physiology. Frontiers in Cell and Developmental Biology, 2022, 10, 854120.	3.7	4
25	Alternative preâ€ <scp>mRNA</scp> splicing. Acta Physiologica, 2018, 222, e13053.	3.8	3
26	Wt1 haploinsufficiency induces browning of epididymal fat and alleviates metabolic dysfunction in mice on high-fat diet. Diabetologia, 2022, 65, 528-540.	6.3	3
27	Adaptation of the Oxygen Sensing System during Lung Development. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	4.0	3
28	Autosomal dominant polycystic kidney disease in absence of renal cyst formation illustrates genetic interaction between WT1 and PKD1. Journal of Medical Genetics, 2021, 58, 140-144.	3.2	2
29	Polyamines, metabolites and metabolomics. Acta Physiologica, 2020, 229, e13480.	3.8	1
30	WT1 regulates HOXB9 gene expression in a bidirectional way. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194764.	1.9	1
31	Wilms' Tumor Protein WT1(â€KTS) inhibits Renin gene transcription. FASEB Journal, 2007, 21, A896	0.5	Ο
32	Fatty acid dependent regulation of renin transcription by nuclear hormone receptor HNFâ€4. FASEB Journal, 2008, 22, 735.9.	0.5	0