Nancy M Bonini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of <i>miRâ€34</i> in <i>Drosophila</i> dysregulates protein translation and protein turnover in the aging brain. Aging Cell, 2022, 21, e13559.	3.0	13
2	Inducing different severities of traumatic brain injury in Drosophila using a piezoelectric actuator. Nature Protocols, 2021, 16, 263-282.	5.5	15
3	An Integrated Multi-omics Approach Identifies Therapeutic Potential for ATP6V1A in Late Onset Alzheimer's Disease. Neuron, 2021, 109, 193-194.	3.8	2
4	Toxicity of pathogenic ataxin-2 in <i>Drosophila</i> shows dependence on a pure CAG repeat sequence. Human Molecular Genetics, 2021, 30, 1797-1810.	1.4	6
5	Glial AP1 is activated with aging and accelerated by traumatic brain injury. Nature Aging, 2021, 1, 585-597.	5.3	9
6	Synergistic effects of brain injury and aging: common mechanisms of proteostatic dysfunction. Trends in Neurosciences, 2021, 44, 728-740.	4.2	9
7	New Roles for Canonical Transcription Factors in Repeat Expansion Diseases. Trends in Genetics, 2020, 36, 81-92.	2.9	15
8	An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nature Genetics, 2020, 52, 1024-1035.	9.4	191
9	TDP-43 a protein central to amyotrophic lateral sclerosis is destabilized by Tankyrase-1/2. Journal of Cell Science, 2020, 133, .	1.2	11
10	Dynamic neural and glial responses of a head-specific model for traumatic brain injury in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17269-17277.	3.3	36
11	Repeat-associated non-AUG (RAN) translation mechanisms are running into focus for GGGGCC-repeat associated ALS/FTD. Progress in Neurobiology, 2019, 183, 101697.	2.8	10
12	Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends in Genetics, 2019, 35, 601-613.	2.9	22
13	Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nature Neuroscience, 2019, 22, 863-874.	7.1	65
14	Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathologica Communications, 2019, 7, 65.	2.4	20
15	elF4B and elF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathologica Communications, 2019, 7, 62.	2.4	38
16	En Masse Analysis of Genetic Modifiers Informs Players and Processes in ALS. Neuroscience, 2019, 396, A1-A2.	1.1	0
17	Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease. Nature Neuroscience, 2018, 21, 497-505.	7.1	236
18	Poly(ADP-ribose) Engages the TDP-43 Nuclear-Localization Sequence to Regulate Granulo-Filamentous Aggregation. Biochemistry, 2018, 57, 6923-6926.	1.2	28

#	Article	IF	CITATIONS
19	MiR-34 inhibits polycomb repressive complex 2 to modulate chaperone expression and promote healthy brain aging. Nature Communications, 2018, 9, 4188.	5.8	41
20	Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nature Communications, 2018, 9, 4406.	5.8	40
21	Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathologica Communications, 2018, 6, 55.	2.4	24
22	Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Molecular Cell, 2018, 71, 703-717.e9.	4.5	309
23	Epigenetic Regulation in Neurodegenerative Diseases. Trends in Neurosciences, 2018, 41, 587-598.	4.2	248
24	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	1.5	86
25	Editorial overview: Molecular & genetic basis of disease. Current Opinion in Genetics and Development, 2017, 44, iv-vi.	1.5	Ο
26	The Sustained Impact of Model Organisms—in Genetics and Epigenetics. Genetics, 2017, 205, 1-4.	1.2	13
27	Sedimentation Velocity Analysis with Fluorescence Detection of Mutant Huntingtin Exon 1 Aggregation in <i>Drosophila melanogaster</i> and <i>Caenorhabditis elegans</i> . Biochemistry, 2017, 56, 4676-4688.	1.2	4
28	TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Current Biology, 2017, 27, 3579-3590.e6.	1.8	63
29	Changes in the Transcriptome of Human Astrocytes Accompanying Oxidative Stress-Induced Senescence. Frontiers in Aging Neuroscience, 2016, 8, 208.	1.7	72
30	Fruit flies on the front line: the translational impact of <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2016, 9, 229-231.	1.2	35
31	Spt4 selectively regulates the expression of <i>C9orf72</i> sense and antisense mutant transcripts. Science, 2016, 353, 708-712.	6.0	116
32	The exonuclease Nibbler regulates ageâ€associated traits and modulates pi <scp>RNA</scp> length in <i><scp>D</scp>rosophila</i> . Aging Cell, 2015, 14, 443-452.	3.0	58
33	<i>Drosophila</i> as an <i>In Vivo</i> Model for Human Neurodegenerative Disease. Genetics, 2015, 201, 377-402.	1.2	266
34	Ataxin-2 expands insight into the ALS clinical spectrum. Neurology, 2015, 84, 224-225.	1.5	0
35	A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Human Molecular Genetics, 2015, 24, 954-962.	1.4	17
36	Hope on the (fruit) fly: the <i>Drosophila</i> wing paradigm of axon injury. Neural Regeneration Research, 2015, 10, 173.	1.6	2

#	Article	IF	CITATIONS
37	GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. ELife, 2015, 4, e08881.	2.8	81
38	Poly-A Binding Protein-1 Localization to a Subset of TDP-43 Inclusions in Amyotrophic Lateral Sclerosis Occurs More Frequently in Patients Harboring an Expansion in <i>C9orf72</i> . Journal of Neuropathology and Experimental Neurology, 2014, 73, 837-845.	0.9	46
39	Therapeutic modulation of elF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nature Genetics, 2014, 46, 152-160.	9.4	321
40	Impact of age-associated increase in 2′- <i>O</i> -methylation of miRNAs on aging and neurodegeneration in <i>Drosophila</i> . Genes and Development, 2014, 28, 44-57.	2.7	55
41	Axon Injury and Regeneration in the Adult Drosophila. Scientific Reports, 2014, 4, 6199.	1.6	34
42	Age-dependent patterns of microRNA RISC loading. Aging, 2014, 6, 705-706.	1.4	15
43	Design and implementation of in vivo imaging of neural injury responses in the adult Drosophila wing. Nature Protocols, 2013, 8, 810-819.	5.5	21
44	MicroRNAs and neurodegeneration: role and impact. Trends in Cell Biology, 2013, 23, 30-36.	3.6	179
45	Hsp104 Suppresses Polyglutamine-Induced Degeneration Post Onset in a Drosophila MJD/SCA3 Model. PLoS Genetics, 2013, 9, e1003781.	1.5	73
46	Protein interacting with C kinase (PICK1) is a suppressor of spinocerebellar ataxia 3-associated neurodegeneration in Drosophila. Human Molecular Genetics, 2012, 21, 76-84.	1.4	21
47	Axon Degeneration and Regeneration: Insights from <i>Drosophila</i> Models of Nerve Injury. Annual Review of Cell and Developmental Biology, 2012, 28, 575-597.	4.0	62
48	The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature, 2012, 482, 519-523.	13.7	378
49	A Novel Drosophila Model of Nerve Injury Reveals an Essential Role of Nmnat in Maintaining Axonal Integrity. Current Biology, 2012, 22, 590-595.	1.8	130
50	Modeling Human Trinucleotide Repeat Diseases in Drosophila. International Review of Neurobiology, 2011, 99, 191-212.	0.9	14
51	Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy. PLoS Genetics, 2011, 7, e1001340.	1.5	70
52	The Exoribonuclease Nibbler Controls 3′ End Processing of MicroRNAs in Drosophila. Current Biology, 2011, 21, 1888-1893.	1.8	127
53	Model Organisms Reveal Insight into Human Neurodegenerative Disease: Ataxin-2 Intermediate-Length Polyglutamine Expansions Are a Risk Factor for ALS. Journal of Molecular Neuroscience, 2011, 45, 676-683.	1.1	38
54	Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Human Molecular Genetics, 2011, 20, 1697-1700.	1.4	127

#	Article	IF	CITATIONS
55	Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila. Human Molecular Genetics, 2011, 20, 4810-4821.	1.4	52
56	Defining Genetic Factors That Modulate Intergenerational CAG Repeat Instability in <i>Drosophila melanogaster</i> . Genetics, 2011, 187, 61-71.	1.2	12
57	PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats. PLoS ONE, 2011, 6, e17951.	1.1	73
58	Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 2010, 466, 1069-1075.	13.7	1,117
59	DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9747-9752.	3.3	247
60	Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends in Neurosciences, 2010, 33, 292-298.	4.2	66
61	Drosophila as a Model for Neurodegenerative Disease: Roles of RNA Pathways in Pathogenesis. Research and Perspectives in Neurosciences, 2010, , 79-90.	0.4	Ο
62	Preventing Ataxin-3 protein cleavage mitigates degeneration in a Drosophila model of SCA3. Human Molecular Genetics, 2009, 18, 4843-4852.	1.4	55
63	Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nature Reviews Genetics, 2009, 10, 359-370.	7.7	154
64	Drosophila Models for Parkinson's Disease Research. , 2008, , 335-346.		0
65	RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature, 2008, 453, 1107-1111.	13.7	298
66	A Drosophila Model for Amyotrophic Lateral Sclerosis Reveals Motor Neuron Damage by Human SOD1. Journal of Biological Chemistry, 2008, 283, 24972-24981.	1.6	139
67	Polyglutamine Genes Interact to Modulate the Severity and Progression of Neurodegeneration in Drosophila. PLoS Biology, 2008, 6, e29.	2.6	84
68	A Tribute to Seymour Benzer, 1921–2007. Genetics, 2008, 180, 1265-1273.	1.2	10
69	RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10244-10249.	3.3	196
70	Suppression of Polyglutamine Toxicity by the Yeast Sup35 Prion Domain in Drosophila. Journal of Biological Chemistry, 2007, 282, 37694-37701.	1.6	11
71	Genome-Wide Screen for Modifiers of Ataxin-3 Neurodegeneration in Drosophila. PLoS Genetics, 2007, 3, e177.	1.5	192
72	CREB-Binding Protein Modulates Repeat Instability in a Drosophila Model for PolyQ Disease. Science, 2007, 315, 1857-1859.	6.0	126

#	Article	IF	CITATIONS
73	Convergence of Heat Shock Protein 90 with Ubiquitin in Filamentous α-Synuclein Inclusions of α-Synucleinopathies. American Journal of Pathology, 2006, 168, 947-961.	1.9	154
74	Â-Synuclein Blocks ER-Golgi Traffic and Rab1 Rescues Neuron Loss in Parkinson's Models. Science, 2006, 313, 324-328.	6.0	1,268
75	Hosting Neurotoxicity in Polyglutamine Disease. Cell, 2006, 127, 1299-1300.	13.5	4
76	MicroRNA Pathways Modulate Polyglutamine-Induced Neurodegeneration. Molecular Cell, 2006, 24, 157-163.	4.5	240
77	Drosophila and C. elegans Models of Human Age-Associated Neurodegenerative Diseases. , 2006, , 347-369.		1
78	An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO Journal, 2006, 25, 1547-1558.	3.5	142
79	Biochemical and pathological characterization of Lrrk2. Annals of Neurology, 2006, 59, 315-322.	2.8	229
80	A New Role for MicroRNA Pathways: Modulation of Degeneration Induced by Pathogenic Human Disease Proteins. Cell Cycle, 2006, 5, 2835-2838.	1.3	67
81	Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12517-12522.	3.3	213
82	Drosophilaas a Model for Human Neurodegenerative Disease. Annual Review of Genetics, 2005, 39, 153-171.	3.2	383
83	Drosophila DJ-1 Mutants Are Selectively Sensitive to Environmental Toxins Associated with Parkinson's Disease. Current Biology, 2005, 15, 1572-1577.	1.8	332
84	Mechanisms of Suppression of α-Synuclein Neurotoxicity by Geldanamycin in Drosophila. Journal of Biological Chemistry, 2005, 280, 2873-2878.	1.6	191
85	Ataxin-3 Suppresses Polyglutamine Neurodegeneration in Drosophila by a Ubiquitin-Associated Mechanism. Molecular Cell, 2005, 18, 37-48.	4.5	241
86	Snaring the Function of α-Synuclein. Cell, 2005, 123, 359-361.	13.5	143
87	Silencing Polyglutamine Degeneration with RNAi. Neuron, 2005, 48, 715-718.	3.8	27
88	Drosophila Models of Polyglutamine Diseases. , 2003, 217, 241-252.		5
89	Disruption of Axonal Transport by Loss of Huntingtin or Expression of Pathogenic PolyQ Proteins in Drosophila. Neuron, 2003, 40, 25-40.	3.8	583
90	HUMANNEURODEGENERATIVEDISEASEMODELINGUSINGDROSOPHILA. Annual Review of Neuroscience, 2003, 26, 627-656.	5.0	152

#	Article	IF	CITATIONS
91	Chaperoning brain degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16407-16411.	3.3	203
92	Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Human Molecular Genetics, 2002, 11, 2895-2904.	1.4	148
93	Chaperone Suppression of alpha -Synuclein Toxicity in a Drosophila Model for Parkinson's Disease. Science, 2002, 295, 865-868.	6.0	1,206
94	Pharmacological prevention of Parkinson disease in Drosophila. Nature Medicine, 2002, 8, 1185-1186.	15.2	296
95	Applications of the Drosophila Retina to Human Disease Modeling. Results and Problems in Cell Differentiation, 2002, 37, 257-275.	0.2	7
96	Stores to Die For. Developmental Cell, 2001, 1, 447-448.	3.1	0
97	Modeling human neurodegenerative diseases in Drosophila: on a wing and a prayer. Trends in Genetics, 2000, 16, 161-167.	2.9	108
98	Drosophila as a Genetic Tool to Define Vertebrate Pathway Players. , 2000, 136, 7-14.		6
99	Methods to Detect Patterns of Cell Death in Drosophila. , 2000, 136, 115-121.		2
100	Functional Analysis of an Eye Enhancer of the Drosophila eyes absent Gene: Differential Regulation by Eye Specification Genes. Developmental Biology, 2000, 221, 355-364.	0.9	31
101	Molecular Genetic Analysis of Drosophila eyes absent Mutants Reveals an Eye Enhancer Element. Genetics, 2000, 154, 237-246.	1.2	60
102	Molecular Analysis of Drosophila <i>eyes absent</i> Mutants Reveals Features of the Conserved Eya Domain. Genetics, 2000, 155, 709-720.	1.2	60
103	Analysis of the Role of Heat Shock Protein (Hsp) Molecular Chaperones in Polyglutamine Disease. Journal of Neuroscience, 1999, 19, 10338-10347.	1.7	410
104	Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genetics, 1999, 23, 425-428.	9.4	815
105	Surviving Drosophila eye development: integrating cell death with differentiation during formation of a neural structure. BioEssays, 1999, 21, 991-1003.	1.2	33
106	A genetic model for human polyglutamine-repeat disease in Drosophila melanogaster. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1057-1060.	1.8	26
107	Expanded Polyglutamine Protein Forms Nuclear Inclusions and Causes Neural Degeneration in Drosophila. Cell, 1998, 93, 939-949.	13.5	640
108	Dual functions of the Drosophila eyes absent gene in the eye and embryo. Mechanisms of Development, 1998, 73, 193-202.	1.7	26

#	Article	IF	CITATIONS
109	Multiple Roles of theeyes absentGene inDrosophila. Developmental Biology, 1998, 196, 42-57.	0.9	116
110	Recruitment and the Role of Nuclear Localization in Polyglutamine-mediated Aggregation. Journal of Cell Biology, 1998, 143, 1457-1470.	2.3	307
111	Surviving Drosophila eye development. Cell Death and Differentiation, 1997, 4, 4-11.	5.0	8
112	Early decisions in Drosophila eye morphogenesis. Current Opinion in Genetics and Development, 1995, 5, 507-515.	1.5	44
113	The eyes absent gene: Genetic control of cell survival and differentiation in the developing Drosophila eye. Cell, 1993, 72, 379-395.	13.5	555
114	Regulation of ciliary motility by membrane potential inParamecium: A role for cyclic AMP. Cytoskeleton, 1986, 6, 256-272.	4.4	108