Torsten Steinmetzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/728888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro interaction of potential antiviral TMPRSS2 inhibitors with human serum albumin and cytochrome P 450 isoenzymes. Biomedicine and Pharmacotherapy, 2022, 146, 112513.	5.6	3
2	Interspecies Comparisons of the Effects of Potential Antiviral 3-Amidinophenylalanine Derivatives on Cytochrome P450 1A2 Isoenzyme. Veterinary Sciences, 2022, 9, 156.	1.7	2
3	Structure-Based Optimization and Characterization of Macrocyclic Zika Virus NS2B-NS3 Protease Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 6555-6572.	6.4	7
4	Improving the selectivity of 3-amidinophenylalanine-derived matriptase inhibitors. European Journal of Medicinal Chemistry, 2022, 238, 114437.	5.5	7
5	In vitro characterization of the furin inhibitor MI-1851: Albumin binding, interaction with cytochrome P450 enzymes and cytotoxicity. Biomedicine and Pharmacotherapy, 2022, 151, 113124.	5.6	6
6	Exposure of human intestinal epithelial cells and primary human hepatocytes to trypsin-like serine protease inhibitors with potential antiviral effect. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 659-668.	5.2	7
7	How a Fragment Draws Attention to Selectivity Discriminating Features between the Related Proteases Trypsin and Thrombin. Journal of Medicinal Chemistry, 2021, 64, 1611-1625.	6.4	2
8	The Basicity Makes the Difference: Improved Canavanine-Derived Inhibitors of the Proprotein Convertase Furin. ACS Medicinal Chemistry Letters, 2021, 12, 426-432.	2.8	11
9	OFF-State-Specific Inhibition of the Proprotein Convertase Furin. ACS Chemical Biology, 2021, 16, 1692-1700.	3.4	10
10	NMR-Based Structural Characterization of a Two-Disulfide-Bonded Analogue of the FXIIIa Inhibitor Tridegin: New Insights into Structure–Activity Relationships. International Journal of Molecular Sciences, 2021, 22, 880.	4.1	4
11	3-Amidinophenylalanine-derived matriptase inhibitors can modulate hepcidin production in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 511-520.	3.0	2
12	Fibrinolysis Inhibitors: Potential Drugs for the Treatment and Prevention of Bleeding. Journal of Medicinal Chemistry, 2020, 63, 1445-1472.	6.4	21
13	Acylated 1 <i>H</i> -1,2,4-Triazol-5-amines Targeting Human Coagulation Factor XIIa and Thrombin: Conventional and Microscale Synthesis, Anticoagulant Properties, and Mechanism of Action. Journal of Medicinal Chemistry, 2020, 63, 13159-13186.	6.4	21
14	The Amino Acid at Position 8 of the Proteolytic Cleavage Site of the Mumps Virus Fusion Protein Affects Viral Proteolysis and Fusogenicity. Journal of Virology, 2020, 94, .	3.4	0
15	Structureâ€Based Macrocyclization of Substrate Analogue NS2Bâ€NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem, 2020, 15, 1439-1452.	3.2	29
16	Transcriptome profiling and protease inhibition experiments identify proteases that activate H3N2 influenza A and influenza B viruses in murine airways. Journal of Biological Chemistry, 2020, 295, 11388-11407.	3.4	31
17	Distinct 3-disulfide-bonded isomers of tridegin differentially inhibit coagulation factor XIIIa: The influence of structural stability on bioactivity. European Journal of Medicinal Chemistry, 2020, 201, 112474.	5.5	4
18	TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance, 2020, 3, e202000786.	2.8	597

TORSTEN STEINMETZER

#	Article	IF	CITATIONS
19	A novel cellâ€based sensor detecting the activity of individual basic proprotein convertases. FEBS Journal, 2019, 286, 4597-4620.	4.7	4
20	Strategies for Late-Stage Optimization: Profiling Thermodynamics by Preorganization and Salt Bridge Shielding. Journal of Medicinal Chemistry, 2019, 62, 9753-9771.	6.4	15
21	Design, Synthesis, and Characterization of Macrocyclic Inhibitors of the Proprotein Convertase Furin. ChemMedChem, 2019, 14, 673-685.	3.2	27
22	Coagulation Factor XIIIa Inhibitor Tridegin: On the Role of Disulfide Bonds for Folding, Stability, and Function. Journal of Medicinal Chemistry, 2019, 62, 3513-3523.	6.4	7
23	X-ray Structures of the Proprotein Convertase Furin Bound with Substrate Analogue Inhibitors Reveal Substrate Specificity Determinants beyond the S4 Pocket. Biochemistry, 2018, 57, 925-934.	2.5	30
24	Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus. Cell Reports, 2018, 25, 312-320.e7.	6.4	13
25	Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Research, 2018, 160, 17-24.	4.1	52
26	The Antiviral Potential of Host Protease Inhibitors. , 2018, , 279-325.		22
27	Proteinâ€Templated Formation of an Inhibitor of the Blood Coagulation Factorâ€Xa through a Backgroundâ€Free Amidation Reaction. Angewandte Chemie - International Edition, 2017, 56, 3718-3722.	13.8	28
28	Matriptase Induction of Metalloproteinaseâ€Dependent Aggrecanolysis In Vitro and In Vivo: Promotion of Osteoarthritic Cartilage Damage by Multiple Mechanisms. Arthritis and Rheumatology, 2017, 69, 1601-1611.	5.6	16
29	Elongated and Shortened Peptidomimetic Inhibitors of the Proprotein Convertase Furin. ChemMedChem, 2017, 12, 613-620.	3.2	16
30	Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 712-721.	5.2	34
31	A Fluorescentâ€Labeled Phosphono Bisbenzguanidine As an Activityâ€Based Probe for Matriptase. Chemistry - A European Journal, 2017, 23, 5205-5209.	3.3	12
32	Optimization of Substrateâ€Analogue Furin Inhibitors. ChemMedChem, 2017, 12, 1953-1968.	3.2	28
33	The Impact of Acute Matriptase Inhibition in Hepatic Inflammatory Models. BioMed Research International, 2016, 2016, 1-8.	1.9	7
34	Identification of inhibitors of the transmembrane protease FlaK of <i>Methanococcus maripaludis</i> . MicrobiologyOpen, 2016, 5, 637-646.	3.0	4
35	Changing the selectivity profile – from substrate analog inhibitors of thrombin and factor Xa to potent matriptase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 89-97.	5.2	6
36	Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11196-11201.	7.1	73

#	Article	IF	CITATIONS
37	First Structure–Activity Relationship of 17β-Hydroxysteroid Dehydrogenase Type 14 Nonsteroidal Inhibitors and Crystal Structures in Complex with the Enzyme. Journal of Medicinal Chemistry, 2016, 59, 10719-10737.	6.4	12
38	Limiting the Number of Potential Binding Modes by Introducing Symmetry into Ligands: Structureâ€Based Design of Inhibitors for Trypsin‣ike Serine Proteases. Chemistry - A European Journal, 2016, 22, 610-625.	3.3	11
39	Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell. Cellular Microbiology, 2016, 18, 340-354.	2.1	20
40	<i>In vitro</i> characterization of TMPRSS2 inhibition in IPEC-J2 cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 123-129.	5.2	15
41	Optimization of Cyclic Plasmin Inhibitors: From Benzamidines to Benzylamines. Journal of Medicinal Chemistry, 2016, 59, 6370-6386.	6.4	17
42	Thrombinâ€Inhibiting Anticoagulant Liposomes: Development and Characterization. ChemMedChem, 2016, 11, 340-349.	3.2	6
43	Interaction exists between matriptase inhibitors and intestinal epithelial cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 736-741.	5.2	9
44	Novel Furin Inhibitors with Potent Antiâ€infectious Activity. ChemMedChem, 2015, 10, 1218-1231.	3.2	64
45	A Bisbenzamidine Phosphonate as a Janusâ€faced Inhibitor for Trypsinâ€like Serine Proteases. ChemMedChem, 2015, 10, 1641-1646.	3.2	6
46	Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics. European Journal of Cell Biology, 2015, 94, 375-383.	3.6	73
47	Peptidomimetic furin inhibitor MI-701 in combination with oseltamivir and ribavirin efficiently blocks propagation of highly pathogenic avian influenza viruses and delays high level oseltamivir resistance in MDCK cells. Antiviral Research, 2015, 120, 89-100.	4.1	29
48	Novel Insights into Structure and Function of Factor XIIIa-Inhibitor Tridegin. Journal of Medicinal Chemistry, 2014, 57, 10355-10365.	6.4	18
49	Correlating structure and ligand affinity in drug discovery: a cautionary tale involving second shell residues. Biological Chemistry, 2014, 395, 891-903.	2.5	10
50	X-ray Structures of Human Furin in Complex with Competitive Inhibitors. ACS Chemical Biology, 2014, 9, 1113-1118.	3.4	69
51	Synthesis and characterization of novel fluorogenic substrates of coagulation factor XIII-A. Analytical Biochemistry, 2013, 442, 223-230.	2.4	8
52	Identification of the first synthetic inhibitors of the typeÂll transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochemical Journal, 2013, 452, 331-343.	3.7	111
53	Development of New Cyclic Plasmin Inhibitors with Excellent Potency and Selectivity. Journal of Medicinal Chemistry, 2013, 56, 820-831.	6.4	26
54	Development and Characterization of New Peptidomimetic Inhibitors of the West Nile Virus NS2B–NS3 Protease. ChemMedChem, 2013, 8, 231-241.	3.2	63

#	Article	IF	CITATIONS
55	Matriptase, HAT, and TMPRSS2 Activate the Hemagglutinin of H9N2 Influenza A Viruses. Journal of Virology, 2013, 87, 1811-1820.	3.4	116
56	Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors. Journal of the American Society for Mass Spectrometry, 2012, 23, 1768-1777.	2.8	39
57	Ligand Binding Stepwise Disrupts Water Network in Thrombin: Enthalpic and Entropic Changes Reveal Classical Hydrophobic Effect. Journal of Medicinal Chemistry, 2012, 55, 6094-6110.	6.4	86
58	Highly Potent Inhibitors of Proprotein Convertase Furin as Potential Drugs for Treatment of Infectious Diseases. Journal of Biological Chemistry, 2012, 287, 21992-22003.	3.4	98
59	New 3-amidinophenylalanine-derived inhibitors of matriptase. MedChemComm, 2012, 3, 807.	3.4	47
60	Design, synthesis, and characterization of chromogenic substrates of coagulation factor XIIIa. Analytical Biochemistry, 2012, 428, 73-80.	2.4	6
61	Beyond Heparinization: Design of Highly Potent Thrombin Inhibitors Suitable for Surface Coupling. ChemMedChem, 2012, 7, 1965-1973.	3.2	9
62	A New Strategy for the Development of Highly Potent and Selective Plasmin Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 1171-1180.	6.4	34
63	Synthesis and Functional Characterization of Tridegin and Its Analogues: Inhibitors and Substrates of Factor XIIIa. ChemMedChem, 2012, 7, 326-333.	3.2	23
64	Insights into Matriptaseâ€2 Substrate Binding and Inhibition Mechanisms by Analyzing Active‧iteâ€Mutated Variants. ChemMedChem, 2012, 7, 68-72.	3.2	13
65	Inside Cover: Insights into Matriptase-2 Substrate Binding and Inhibition Mechanisms by Analyzing Active-Site-Mutated Variants (ChemMedChem 1/2012). ChemMedChem, 2012, 7, 2-2.	3.2	0
66	Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4860-4864.	2.2	41
67	New substrate analogue furin inhibitors derived from 4-amidinobenzylamide. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4695-4697.	2.2	25
68	Editorial: Pharmazie in unserer Zeit 2/2011. Pharmazie in Unserer Zeit, 2011, 40, 95-95.	0.0	0
69	New furin inhibitors based on weakly basic amidinohydrazones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 836-840.	2.2	27
70	Timeâ€domain <i>in vivo</i> near infrared fluorescence imaging for evaluation of matriptase as a potential target for the development of novel, inhibitorâ€based tumor therapies. International Journal of Cancer, 2010, 127, 1958-1974.	5.1	23
71	Identification of the First Low-Molecular-Weight Inhibitors of Matriptase-2. Journal of Medicinal Chemistry, 2010, 53, 5523-5535.	6.4	67
72	Cleavage of Influenza Virus Hemagglutinin by Airway Proteases TMPRSS2 and HAT Differs in Subcellular Localization and Susceptibility to Protease Inhibitors. Journal of Virology, 2010, 84, 5605-5614.	3.4	159

TORSTEN STEINMETZER

#	Article	IF	CITATIONS
73	Potent Inhibitors of Furin and Furin-like Proprotein Convertases Containing Decarboxylated P1 Arginine Mimetics. Journal of Medicinal Chemistry, 2010, 53, 1067-1075.	6.4	111
74	Modification of the N-terminal sulfonyl residue in 3-amidinophenylalanine-based matriptase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 67-73.	2.2	20
75	Incorporation of neutral C-terminal residues in 3-amidinophenylalanine-derived matriptase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1960-1965.	2.2	18
76	MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. Vaccine, 2009, 27, 6324-6329.	3.8	81
77	Use of IHC and newly designed matriptase inhibitors to elucidate the role of matriptase in pancreatic ductal adenocarcinoma. International Journal of Oncology, 2009, 35, 347-57.	3.3	7
78	Highly Potent and Selective Substrate Analogue Factor Xa Inhibitors ContainingD-Homophenylalanine Analogues as P3 Residue: Part 2. ChemMedChem, 2007, 2, 1043-1053.	3.2	28
79	From selective substrate analogue factor Xa inhibitors to dual inhibitors of thrombin and factor Xa. Part 3. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3322-3329.	2.2	20
80	Secondary Amides of Sulfonylated 3-Amidinophenylalanine. New Potent and Selective Inhibitors of Matriptaseâ€. Journal of Medicinal Chemistry, 2006, 49, 4116-4126.	6.4	93
81	New Substrate Analogue Inhibitors of Factor Xa Containing 4-Amidinobenzylamide as P1 Residue: Part 1. Medicinal Chemistry, 2006, 2, 349-361.	1.5	35
82	Progress in the Development of Synthetic Thrombin Inhibitors as New Orally Active Anticoagulants. Current Medicinal Chemistry, 2004, 11, 2297-2321.	2.4	75
83	Design of Novel and Selective Inhibitors of Urokinase-type Plasminogen Activator with Improved Pharmacokinetic Properties for Use as Antimetastatic Ágents. Journal of Biological Chemistry, 2004, 279, 33613-33622.	3.4	113
84	Synthetic urokinase inhibitors as potential antitumor drugs. IDrugs: the Investigational Drugs Journal, 2003, 6, 138-46.	0.7	2
85	The Methyl Group of Nα(Me)Arg-containing Peptides Disturbs the Active-site Geometry of Thrombin, Impairing Efficient Cleavage. Journal of Molecular Biology, 2002, 316, 869-874.	4.2	19
86	4-Amidinobenzylamine-Based inhibitors of urokinase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 645-648.	2.2	19
87	Influence of structural variations in peptidomimetic 4-amidinophenylalanine-derived thrombin inhibitors on plasma clearance and biliary excretion in rats. Pharmaceutical Research, 2002, 19, 1027-1033.	3.5	10
88	Structure-activity relationships of new NAPAP-analogs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 241-9.	5.2	3
89	Structure-Activity Relationships of New NAPAP-Analogs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 241-249.	0.5	9
90	Advances in the development of thrombin inhibitors. Expert Opinion on Investigational Drugs, 2001, 10, 845-864.	4.1	61

6

TORSTEN STEINMETZER

#	Article	IF	CITATIONS
91	Identification of novel periviscerokinins from single neurohaemal release sites in insects. FEBS Journal, 2000, 267, 3869-3873.	0.2	44
92	Novel non-peptide lead structures for bradykinin B2-receptor antagonists. International Journal of Peptide Research and Therapeutics, 2000, 7, 69-77.	0.1	3
93	New Thrombin Inhibitors Based on D-CHA-PRO-Derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 1999, 14, 203-216.	0.5	11
94	3-Amidinophenylalanine-based inhibitors of urokinase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3147-3152.	2.2	58
95	Design and evaluation of novel bivalent thrombin inhibitors based on amidinophenylalanines. FEBS Journal, 1999, 265, 598-605.	0.2	24
96	Two-Stage Method for Proteinâ `Ligand Docking. Journal of Medicinal Chemistry, 1999, 42, 4422-4433.	6.4	86
97	Potent Bivalent Thrombin Inhibitors:  Replacement of the Scissile Peptide Bond at P1â^'P1â€~ with Arginyl Ketomethylene Isosteres. Journal of Medicinal Chemistry, 1999, 42, 3109-3115.	6.4	21
98	Tripeptidyl pyridinium methyl ketones as potent active site inhibitors of thrombin. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1677-1682.	2.2	10
99	Tyrosine Phosphorylation of Csα and Inhibition of Bradykinin-induced Activation of the Cyclic AMP Pathway in A431 Cells by Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1996, 271, 31098-31105.	3.4	37
100	Peptidyl Ammonium Methyl Ketones as Substrate Analog Inhibitors of Proline-Specific Peptidases. Journal of Enzyme Inhibition and Medicinal Chemistry, 1993, 7, 77-85.	0.5	11
101	Enzymic properties of intestinal aminopeptidase P: A new continuous assay. FEBS Letters, 1988, 227, 171-174.	2.8	31