
Natalia Tapia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7288874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors. Cell Stem Cell, 2012, 10, 465-472.	5.2	511
2	Conserved and Divergent Roles of FGF Signaling in Mouse Epiblast Stem Cells and Human Embryonic Stem Cells. Cell Stem Cell, 2010, 6, 215-226.	5.2	308
3	Induction of Pluripotency in Adult Unipotent Germline Stem Cells. Cell Stem Cell, 2009, 5, 87-96.	5.2	246
4	Epiblast Stem Cell Subpopulations Represent Mouse Embryos of Distinct Pregastrulation Stages. Cell, 2010, 143, 617-627.	13.5	195
5	Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell, 2016, 19, 298-309.	5.2	116
6	Direct reprogramming of fibroblasts into epiblast stem cells. Nature Cell Biology, 2011, 13, 66-71.	4.6	111
7	Human adult germline stem cells in question. Nature, 2010, 465, E1-E1.	13.7	82
8	Sequence Homology Required by Human Immunodeficiency Virus Type 1 To Escape from Short Interfering RNAs. Journal of Virology, 2006, 80, 571-577.	1.5	81
9	Therapeutic Potential of Induced Neural Stem Cells for Spinal Cord Injury. Journal of Biological Chemistry, 2014, 289, 32512-32525.	1.6	75
10	p53 connects tumorigenesis and reprogramming to pluripotency. Journal of Experimental Medicine, 2010, 207, 2045-2048.	4.2	71
11	Direct conversion of mouse fibroblasts into induced neural stem cells. Nature Protocols, 2014, 9, 871-881.	5.5	69
12	Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins. Nature Communications, 2012, 3, 1279.	5.8	64
13	Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Scientific Reports, 2015, 5, 13533.	1.6	58
14	Induced Neural Stem Cells Achieve Long-Term Survival and Functional Integration in the Adult Mouse Brain. Stem Cell Reports, 2014, 3, 423-431.	2.3	51
15	Oct1 regulates trophoblast development during early mouse embryogenesis. Development (Cambridge), 2010, 137, 3551-3560.	1.2	49
16	Combination of a mutagenic agent with a reverse transcriptase inhibitor results in systematic inhibition of HIV-1 infection. Virology, 2005, 338, 1-8.	1.1	41
17	Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions. Scientific Reports, 2014, 4, 7477.	1.6	41
18	Zfp296 Is a Novel, Pluripotent-Specific Reprogramming Factor. PLoS ONE, 2012, 7, e34645.	1.1	37

NATALIA TAPIA

#	Article	IF	CITATIONS
19	Concise Review: Challenging the Pluripotency of Human Testis-Derived ESC-like Cells. Stem Cells, 2011, 29, 1165-1169.	1.4	33
20	Influence of human immunodeficiency virus type 1 subtype on mother-to-child transmission. Journal of General Virology, 2003, 84, 607-613.	1.3	30
21	Inhibition of HIV-1 replication by RNA targeted against the LTR region. Aids, 2005, 19, 863-870.	1.0	28
22	Brief Report: Evaluating the Potential of Putative Pluripotent Cells Derived from Human Testis. Stem Cells, 2011, 29, 1304-1309.	1.4	25
23	Autologous Pluripotent Stem Cells Generated from Adult Mouse Testicular Biopsy. Stem Cell Reviews and Reports, 2012, 8, 435-444.	5.6	22
24	Nanog induces hyperplasia without initiating tumors. Stem Cell Research, 2014, 13, 300-315.	0.3	21
25	Hypoxia Induces Pluripotency in Primordial Germ Cells by HIF1α Stabilization and Oct4 Deregulation. Antioxidants and Redox Signaling, 2015, 22, 205-223.	2.5	21
26	Germ Cell Nuclear Factor Regulates Gametogenesis in Developing Gonads. PLoS ONE, 2014, 9, e103985.	1.1	14
27	Reprogramming to Pluripotency through a Somatic Stem Cell Intermediate. PLoS ONE, 2013, 8, e85138.	1.1	13
28	Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports, 2017, 9, 1275-1290.	2.3	12
29	Counteracting Activities of OCT4 and KLF4 during Reprogramming to Pluripotency. Stem Cell Reports, 2014, 2, 351-365.	2.3	11
30	Inhibition of HIV-1 Replication by an Improved Hairpin Ribozyme That Includes an RNA Decoy. RNA Biology, 2005, 2, 75-79.	1.5	10
31	Epigenetic Aberrations Are Not Specific to Transcription Factor-Mediated Reprogramming. Stem Cell Reports, 2016, 6, 35-43.	2.3	8
32	Restoring Stem Cell Function in Aged Tissues by Direct Reprogramming?. Cell Stem Cell, 2012, 10, 653-656.	5.2	7
33	Enhanced OCT4 transcriptional activity substitutes for exogenous SOX2 in cellular reprogramming. Scientific Reports, 2016, 6, 19415.	1.6	7
34	Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain. Stem Cell Research, 2016, 16, 776-781.	0.3	6
35	Sox2 Level Is a Determinant of Cellular Reprogramming Potential. PLoS ONE, 2013, 8, e67594.	1.1	5
36	Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts. Biological Chemistry, 2016, 397, 249-255.	1.2	5

NATALIA TAPIA

#	Article	IF	CITATIONS
37	Generation of human androgenetic induced pluripotent stem cells. Scientific Reports, 2020, 10, 3614.	1.6	Ο
38	p53 connects tumorigenesis and reprogramming to pluripotency. Journal of Cell Biology, 2010, 191, i2-i2.	2.3	0