Zhihong Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7288797/publications.pdf Version: 2024-02-01

ZHIHONG DENG

#	Article	IF	CITATIONS
1	A State Monitoring Method of Gas Regulator Station Based on Evidence Theory Driven by Time-Domain Information. IEEE Transactions on Industrial Electronics, 2022, 69, 694-702.	5.2	4
2	Magnetoresistive Sensor Error Compensation Method Using Geometry-Constraint Contour Scaling. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	3
3	A Novel Adaptability Analysis Method of Gravity Matching Area. Lecture Notes in Electrical Engineering, 2022, , 5539-5550.	0.3	1
4	State Monitoring of Gas Regulator Station Based on Feature Selection of Improved Grey Relational Analysis. IEEE Internet of Things Journal, 2022, 9, 22765-22773.	5.5	2
5	Improved Particle Filter-Based Matching Method With Gravity Sample Vector for Underwater Gravity-Aided Navigation. IEEE Transactions on Industrial Electronics, 2021, 68, 5206-5216.	5.2	20
6	A Delaunay Triangulation-Based Matching Area Selection Algorithm for Underwater Gravity-Aided Inertial Navigation. IEEE/ASME Transactions on Mechatronics, 2021, 26, 908-917.	3.7	9
7	A Model-Free Calibration Method of Inertial Navigation System and Doppler Sensors. IEEE Sensors Journal, 2021, 21, 2219-2229.	2.4	13
8	Global dynamic pathâ€planning algorithm in gravityâ€aided inertial navigation system. IET Signal Processing, 2021, 15, 510-520.	0.9	4
9	Foot-Mounted Pedestrian Navigation Algorithm Based on BOR/MINS Integrated Framework. IEEE Transactions on Industrial Electronics, 2020, 67, 3980-3989.	5.2	19
10	Foot-Mounted Pedestrian Navigation Method Based on Gait Classification for Three-Dimensional Positioning. IEEE Sensors Journal, 2020, 20, 2045-2055.	2.4	24
11	A Coupling Method of Geomagnetic Aided Inertial Attitude Errors. IEEE Sensors Journal, 2020, 20, 14282-14289.	2.4	7
12	UKF Based on Maximum Correntropy Criterion in the Presence of Both Intermittent Observations and Non-Gaussian Noise. IEEE Sensors Journal, 2020, 20, 7766-7773.	2.4	25
13	A Support Vector Regression-Based Integrated Navigation Method for Underwater Vehicles. IEEE Sensors Journal, 2020, 20, 8875-8883.	2.4	13
14	A Matching Algorithm with Gravity Field Matching Characteristic for Underwater Gravity-aided Inertial Navigation. , 2020, , .		2
15	Sum Vector-Difference-Based Matching Area Selection Method for Underwater Gravity-Aided Navigation. IEEE Access, 2019, 7, 123616-123624.	2.6	6
16	Finite-Time Synchronization for Chaotic Gyros Systems With Terminal Sliding Mode Control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1131-1140.	5.9	44
17	A Characteristic Parameter Matching Algorithm for Gravity-Aided Navigation of Underwater Vehicles. IEEE Transactions on Industrial Electronics, 2019, 66, 1203-1212.	5.2	28
18	A Matching Algorithm Based on the Nonlinear Filter and Similarity Transformation for Gravity-Aided Underwater Navigation. IEEE/ASME Transactions on Mechatronics, 2018, 23, 646-654.	3.7	19

ZHIHONG DENG

#	Article	IF	CITATIONS
19	A Combined Matching Algorithm for Underwater Gravity-Aided Navigation. IEEE/ASME Transactions on Mechatronics, 2018, 23, 233-241.	3.7	35
20	Point mass filter based matching algorithm in gravity aided underwater navigation. Journal of Systems Engineering and Electronics, 2018, 29, 152-159.	1.1	9
21	An Improved Heuristic Drift Elimination Method for Indoor Pedestrian Positioning. Sensors, 2018, 18, 1874.	2.1	6
22	Analysis and Calibration of the Nonorthogonal Angle in Dual-Axis Rotational INS. IEEE Transactions on Industrial Electronics, 2017, 64, 4762-4771.	5.2	41
23	A Robust Solution of Integrated SITAN with TERCOM Algorithm: Weight-Reducing Iteration Technique for Underwater Vehicles' Gravity-Aided Inertial Navigation System. Navigation, Journal of the Institute of Navigation, 2017, 64, 111-122.	1.7	32
24	A Mismatch Diagnostic Method for TERCOM-Based Underwater Gravity-Aided Navigation. IEEE Sensors Journal, 2017, 17, 2880-2888.	2.4	25
25	A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis. Sensors, 2016, 16, 894.	2.1	19
26	The Gravity Matching Area Selection Criteria for Underwater Gravity-Aided Navigation Application Based on the Comprehensive Characteristic Parameter. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2935-2943.	3.7	26
27	A Particle Filter-Based Matching Algorithm With Gravity Sample Vector for Underwater Gravity Aided Navigation. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1399-1408.	3.7	65
28	An Improved TERCOM-Based Algorithm for Gravity-Aided Navigation. IEEE Sensors Journal, 2016, 16, 2537-2544.	2.4	45
29	A Self-Calibration Method for Nonorthogonal Angles Between Gimbals of Rotational Inertial Navigation System. IEEE Transactions on Industrial Electronics, 2015, 62, 2353-2362.	5.2	116
30	Estimation of Information Sharing Error by Dynamic Deformation Between Inertial Navigation Systems. IEEE Transactions on Industrial Electronics, 2014, 61, 2015-2023.	5.2	62
31	Improved ICCP algorithm and its application in gravity matching aided inertial navigation system. , 2014, , .		16
32	A multi-position self-calibration method for dual-axis rotational inertial navigation system. Sensors and Actuators A: Physical, 2014, 219, 24-31.	2.0	70