
Suresh Babu Kalidindi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7288505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the effect of acid modulators on MIL-101 (Cr) metal–organic framework catalysed olefin-aldehyde condensation: a sustainable approach for the selective synthesis of nopol. New Journal of Chemistry, 2022, 46, 726-738.	2.8	7
2	Pd (II) decorated conductive two-dimensional chromium-pyrazine metal-organic framework for rapid detection of hydrogen. International Journal of Hydrogen Energy, 2022, 47, 9477-9483.	7.1	7
3	Unraveling high alkene selectivity at full conversion in alkyne hydrogenation over Ni under continuous flow conditions. Catalysis Science and Technology, 2022, 12, 5265-5273.	4.1	3
4	Nanocomposite Hydrogel of Pd@ZIFâ€8 and Laponite [®] : Size‣elective Hydrogenation Catalyst under Mild Conditions. Chemistry - A European Journal, 2021, 27, 3268-3272.	3.3	16
5	Hybrids of Pd Nanoparticles and Metal–Organic Frameworks for Enhanced Magnetism. Journal of Physical Chemistry Letters, 2021, 12, 4742-4748.	4.6	9
6	Copper(II)â€Assisted Ammonia Borane Dehydrogenation: An Insight. European Journal of Inorganic Chemistry, 2021, 2021, 4000.	2.0	5
7	A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor. Journal of Materials Chemistry A, 2021, 9, 17434-17441.	10.3	26
8	Transfer hydrogenation of alkynes into alkenes by ammonia borane over Pd-MOF catalysts. Dalton Transactions, 2020, 49, 5024-5028.	3.3	22
9	Cooperative catalysis at the metal–MOF interface: hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF. Dalton Transactions, 2019, 48, 8573-8577.	3.3	44
10	Metalâ€Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem, 2019, 20, 1177-1215.	2.1	56
11	An amine functionalized zirconium metal–organic framework as an effective chemiresistive sensor for acidic gases. Chemical Communications, 2019, 55, 349-352.	4.1	83
12	Exploring the BrÃ,nsted acidity of UiO-66 (Zr, Ce, Hf) metal–organic frameworks for efficient solketal synthesis from glycerol acetalization. Dalton Transactions, 2019, 48, 843-847.	3.3	97
13	Assembly of ZIFâ€67 Metal–Organic Framework over Tin Oxide Nanoparticles for Synergistic Chemiresistive CO ₂ Gas Sensing. Chemistry - A European Journal, 2018, 24, 9220-9223.	3.3	79
14	Hybridization of Pd Nanoparticles with UiOâ€66(Hf) Metalâ€Organic Framework and the Effect of Nanostructure on the Catalytic Properties. Chemistry - A European Journal, 2018, 24, 15978-15982.	3.3	48
15	Synergistic Hydrogenation over Palladium through the Assembly of MILâ€101(Fe) MOF over Palladium Nanocubes. Chemistry - A European Journal, 2017, 23, 16456-16459.	3.3	48
16	Chemical and Structural Stability of Zirconiumâ€based Metal–Organic Frameworks with Large Threeâ€Dimensional Pores by Linker Engineering. Angewandte Chemie - International Edition, 2015, 54, 221-226.	13.8	141
17	A Cryogenically Flexible Covalent Organic Framework for Efficient Hydrogen Isotope Separation by Quantum Sieving. Angewandte Chemie - International Edition, 2013, 52, 13219-13222.	13.8	183
18	Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: an experimental study on the correlation between effective quantum sieving and pore size. Journal of Materials Chemistry A, 2013, 1, 3244.	10.3	68

Suresh Babu Kalidindi

#	Article	IF	CITATIONS
19	Lewis base mediated efficient synthesis and solvation-like host–guest chemistry of covalent organic framework-1. Chemical Communications, 2013, 49, 463-465.	4.1	26
20	Covalent organic frameworks and their metal nanoparticle composites: Prospects for hydrogen storage. Physica Status Solidi (B): Basic Research, 2013, 250, 1119-1127.	1.5	43
21	Metal@COFs: Covalent Organic Frameworks as Templates for Pd Nanoparticles and Hydrogen Storage Properties of Pd@COFâ€102 Hybrid Material. Chemistry - A European Journal, 2012, 18, 10848-10856.	3.3	138
22	Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis. Physical Chemistry Chemical Physics, 2012, 14, 8170.	2.8	20
23	Surfactant-Induced Nonhydrolytic Synthesis of Phase-Pure ZrO ₂ Nanoparticles from Metal–Organic and Oxocluster Precursors. Chemistry of Materials, 2012, 24, 4274-4282.	6.7	26
24	Nanocatalysis and Prospects of Green Chemistry. ChemSusChem, 2012, 5, 65-75.	6.8	193
25	Metallocenes@COF-102: organometallic host–guest chemistry of porous crystalline organic frameworks. Chemical Communications, 2011, 47, 8506.	4.1	36
26	GaN@ZIF-8: Selective Formation of Gallium Nitride Quantum Dots inside a Zinc Methylimidazolate Framework. Journal of the American Chemical Society, 2011, 133, 16370-16373.	13.7	119
27	Electrochemical oxidation of boron containing compounds on titanium carbide and its implications to direct fuel cells. Electrochimica Acta, 2011, 56, 10493-10499.	5.2	30
28	Chemical Synthesis of Metal Nanoparticles Using Amine–Boranes. ChemSusChem, 2011, 4, 317-324.	6.8	49
29	BN Chemistry@ZIFâ€8: Dehydrocoupling of Dimethylamine Borane at Room Temperature by Sizeâ€Confinement Effects. Chemistry - A European Journal, 2011, 17, 6594-6597.	3.3	34
30	Dehydrogenation of ammonia borane in fluoro alcohols. International Journal of Hydrogen Energy, 2010, 35, 10819-10825.	7.1	14
31	Metal Nanoparticles via the Atom-Economy Green Approach. Inorganic Chemistry, 2010, 49, 3965-3967.	4.0	40
32	Magnesium/Copper Nanocomposite through Digestive Ripening. Chemistry - an Asian Journal, 2009, 4, 835-838.	3.3	8
33	Highly Monodisperse Colloidal Magnesium Nanoparticles by Room Temperature Digestive Ripening. Inorganic Chemistry, 2009, 48, 4524-4529.	4.0	88
34	Cu2+-induced room temperature hydrogen release from ammonia borane. Energy and Environmental Science, 2009, 2, 1274.	30.8	77
35	Co–Co ₂ B, Ni–Ni ₃ B and Co–Ni–B nanocomposites catalyzed ammonia–bora methanolysis for hydrogen generation. Physical Chemistry Chemical Physics, 2009, 11, 770-775.	າe 2.8	91
36	Synthesis of Cu@ZnO Coreâ^'Shell Nanocomposite through Digestive Ripening of Cu and Zn Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 4042-4048.	3.1	59

#	Article	IF	CITATIONS
37	Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane. Physical Chemistry Chemical Physics, 2008, 10, 5870.	2.8	243
38	First Row Transition Metal Ion-Assisted Ammoniaâ^Borane Hydrolysis for Hydrogen Generation. Inorganic Chemistry, 2008, 47, 7424-7429.	4.0	201
39	Hybridization of Palladium Nanoparticles with Aromaticâ€rich SUâ€101 Metalâ€Organic Framework for Effective Transfer Hydrogenation. European Journal of Inorganic Chemistry, 0, , .	2.0	2