
## **Robert S Tranter**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7288473/publications.pdf Version: 2024-02-01



POREDT S TRANTER

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | In situ temperature measurements in sooting methane/air flames using synchrotron x-ray fluorescence of seeded krypton atoms. Science Advances, 2022, 8, eabm7947.      | 4.7 | 5         |
| 2  | Reactions of propyl radicals: A shock tube–VUV photoionization mass spectrometry study.<br>Combustion and Flame, 2021, 224, 14-23.                                     | 2.8 | 8         |
| 3  | Ring opening in cycloheptane and dissociation of 1-heptene at high temperatures. Proceedings of the Combustion Institute, 2021, 38, 929-937.                           | 2.4 | 3         |
| 4  | Joe V. Michael Memorial Issue. International Journal of Chemical Kinetics, 2021, 53, 687-687.                                                                          | 1.0 | 0         |
| 5  | Initiation reactions in the high temperature decomposition of styrene. Physical Chemistry Chemical Physics, 2021, 23, 18432-18448.                                     | 1.3 | 7         |
| 6  | High pressure, high flow rate batch mixing apparatus for high throughput experiments. Review of<br>Scientific Instruments, 2021, 92, 114104.                           | 0.6 | 3         |
| 7  | An experimental and theoretical study of the high temperature reactions of the four butyl radical isomers. Physical Chemistry Chemical Physics, 2020, 22, 18304-18319. | 1.3 | 16        |
| 8  | Solenoid actuated driver valve for high repetition rate shock tubes. Review of Scientific Instruments, 2020, 91, 056101.                                               | 0.6 | 8         |
| 9  | Thermal dissociation of alkyl nitrites and recombination of alkyl radicals. Proceedings of the Combustion Institute, 2019, 37, 703-710.                                | 2.4 | 9         |
| 10 | A modular, multi-diagnostic, automated shock tube for gas-phase chemistry. Review of Scientific<br>Instruments, 2019, 90, 064104.                                      | 0.6 | 6         |
| 11 | High temperature pyrolysis of 2-methyl furan. Physical Chemistry Chemical Physics, 2018, 20, 10826-10837.                                                              | 1.3 | 17        |
| 12 | 2D-imaging of sampling-probe perturbations in laminar premixed flames using Kr X-ray fluorescence.<br>Combustion and Flame, 2017, 181, 214-224.                        | 2.8 | 51        |
| 13 | An Experimental and Theoretical Study of the Thermal Decomposition of C <sub>4</sub> H <sub>6</sub><br>Isomers. Journal of Physical Chemistry A, 2017, 121, 3827-3850. | 1.1 | 20        |
| 14 | Recombination and dissociation of 2-methyl allyl radicals: Experiment and theory. Proceedings of the Combustion Institute, 2017, 36, 211-218.                          | 2.4 | 17        |
| 15 | A shock tube laser schlieren study of cyclopentane pyrolysis. Proceedings of the Combustion Institute, 2017, 36, 273-280.                                              | 2.4 | 9         |
| 16 | Measuring flow profiles in heated miniature reactors with X-ray fluorescence spectroscopy.<br>Proceedings of the Combustion Institute, 2017, 36, 4603-4610.            | 2.4 | 17        |
| 17 | Dissociation of ortho -benzyne radicals in the high temperature fall-off regime. Proceedings of the Combustion Institute, 2015, 35, 145-152.                           | 2.4 | 8         |
| 18 | Probing Combustion Chemistry in a Miniature Shock Tube with Synchrotron VUV Photo Ionization<br>Mass Spectrometry. Analytical Chemistry, 2015, 87, 2345-2352.          | 3.2 | 50        |

**ROBERT S TRANTER** 

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Note: An improved driver section for a diaphragmless shock tube. Review of Scientific Instruments, 2015, 86, 016117.                                                   | 0.6 | 17        |
| 20 | Thermal Dissociation and Roaming Isomerization of Nitromethane: Experiment and Theory. Journal of Physical Chemistry A, 2015, 119, 7872-7893.                          | 1.1 | 59        |
| 21 | A shock tube laser schlieren study of methyl acetate dissociation in the fall-off regime. Physical<br>Chemistry Chemical Physics, 2014, 16, 7241.                      | 1.3 | 13        |
| 22 | A miniature high repetition rate shock tube. Review of Scientific Instruments, 2013, 84, 094102.                                                                       | 0.6 | 38        |
| 23 | Dissociation of dimethyl ether at high temperatures. Proceedings of the Combustion Institute, 2013, 34, 591-598.                                                       | 2.4 | 23        |
| 24 | Single Pulse Shock Tube Study of Allyl Radical Recombination. Journal of Physical Chemistry A, 2013, 117, 4762-4776.                                                   | 1.1 | 33        |
| 25 | Recombination of Allyl Radicals in the High Temperature Fall-Off Regime. Journal of Physical Chemistry<br>A, 2013, 117, 4750-4761.                                     | 1.1 | 26        |
| 26 | Speciation in Shock Tubes. Green Energy and Technology, 2013, , 143-161.                                                                                               | 0.4 | 2         |
| 27 | Shock Tube Studies of Combustion Relevant Elementary Chemical Reactions and Submechanisms. Green Energy and Technology, 2013, , 629-652.                               | 0.4 | 0         |
| 28 | Shock Tube Investigation of CH <sub>3</sub> + CH <sub>3</sub> OCH <sub>3</sub> . Journal of Physical Chemistry A, 2012, 116, 7287-7292.                                | 1.1 | 29        |
| 29 | Highâ€ŧemperature dissociation of ethyl radicals and ethyl iodide. International Journal of Chemical<br>Kinetics, 2012, 44, 433-443.                                   | 1.0 | 24        |
| 30 | A shock tube and theoretical study on the pyrolysis of 1,4-dioxane. Physical Chemistry Chemical Physics, 2011, 13, 3686-3700.                                          | 1.3 | 16        |
| 31 | Thermal dissociation of ethylene glycol vinyl ether. Physical Chemistry Chemical Physics, 2011, 13, 21288.                                                             | 1.3 | 1         |
| 32 | Dissociation of C3H3I and rates for C3H3 combination at high temperatures. Proceedings of the Combustion Institute, 2011, 33, 259-265.                                 | 2.4 | 26        |
| 33 | Experimental and Theoretical Investigation of the Self-Reaction of Phenyl Radicals. Journal of Physical Chemistry A, 2010, 114, 8240-8261.                             | 1.1 | 63        |
| 34 | The Dissociation of Diacetyl: A Shock Tube and Theoretical Study. Journal of Physical Chemistry A,<br>2009, 113, 8318-8326.                                            | 1.1 | 34        |
| 35 | Decomposition and Vibrational Relaxation in CH <sub>3</sub> 1 and Self-Reaction of CH <sub>3</sub><br>Radicals. Journal of Physical Chemistry A, 2009, 113, 8307-8317. | 1.1 | 33        |
| 36 | A diaphragmless shock tube for high temperature kinetic studies. Review of Scientific Instruments,<br>2008, 79, 094103.                                                | 0.6 | 42        |

**ROBERT S TRANTER** 

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An experimental and theoretical high temperature kinetic study of the thermal unimolecular dissociation of fluoroethane. Physical Chemistry Chemical Physics, 2008, 10, 6266.           | 1.3 | 13        |
| 38 | Shock tube study of dissociation and relaxation in 1,1-difluoroethane and vinyl fluoride. Physical Chemistry Chemical Physics, 2007, 9, 4164.                                           | 1.3 | 11        |
| 39 | Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies. Review of Scientific Instruments, 2007, 78, 034101.                                                   | 0.6 | 44        |
| 40 | Dissociation of 1,1,1-Trifluoroethane Behind Reflected Shock Waves:Â Shock Tube/Time-of-Flight Mass<br>Spectrometry Experiments. Journal of Physical Chemistry A, 2007, 111, 1585-1592. | 1.1 | 16        |
| 41 | An Optimized Semidetailed Submechanism of Benzene Formation from Propargyl Recombination.<br>Journal of Physical Chemistry A, 2006, 110, 2165-2175.                                     | 1.1 | 24        |
| 42 | A SHOCK-TUBE STUDY OF THE HIGH-PRESSURE THERMAL DECOMPOSITION OF BENZENE. Combustion Science and Technology, 2006, 178, 285-305.                                                        | 1.2 | 37        |
| 43 | Ethane oxidation and pyrolysis from 5 bar to 1000 bar: Experiments and simulation. International<br>Journal of Chemical Kinetics, 2005, 37, 306-331.                                    | 1.0 | 24        |
| 44 | Isomeric Product Distributions from the Self-Reaction of Propargyl Radicals. Journal of Physical Chemistry A, 2005, 109, 6056-6065.                                                     | 1.1 | 31        |
| 45 | A Shock-Tube, Laser-Schlieren Study of the Dissociation of 1,1,1-Trifluoroethane:Â An Intrinsic<br>Non-RRKM Process. Journal of Physical Chemistry A, 2004, 108, 2443-2450.             | 1.1 | 24        |
| 46 | A shock tube, laser-schlieren study of the pyrolysis of isobutene: Relaxation, incubation, and dissociation rates. International Journal of Chemical Kinetics, 2003, 35, 381-390.       | 1.0 | 29        |
| 47 | Dissociation, Relaxation, and Incubation in the Pyrolysis of Neopentane:Â Heat of Formation<br>fortert-Butyl Radical. Journal of Physical Chemistry A, 2003, 107, 1532-1539.            | 1.1 | 25        |
| 48 | High pressure, high temperature shock tube studies of ethane pyrolysis and oxidation. Physical Chemistry Chemical Physics, 2002, 4, 2001-2010.                                          | 1.3 | 32        |
| 49 | Design of a high-pressure single pulse shock tube for chemical kinetic investigations. Review of<br>Scientific Instruments, 2001, 72, 3046-3054.                                        | 0.6 | 76        |
| 50 | Rate constants for the reactions of H atoms and OH radicals with ethers at 753 K. Physical Chemistry Chemical Physics, 2001, 3, 4722-4732.                                              | 1.3 | 28        |
| 51 | Thermodynamic functions for the cyclopentadienyl radical: The effect of Jahn-Teller distortion.<br>International Journal of Chemical Kinetics, 2001, 33, 834-845.                       | 1.0 | 36        |
| 52 | Calibration of reaction temperatures in a very high pressure shock tube using chemical thermometers. International Journal of Chemical Kinetics, 2001, 33, 722-731.                     | 1.0 | 67        |
| 53 | Direct measurement of the reaction pair C6H5NO→C6H5+NO by a combined shock tube and flow reactor approach. Proceedings of the Combustion Institute, 1996, 26, 575-582.                  | 0.3 | 10        |