Jin Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7288234/publications.pdf

Version: 2024-02-01

31 papers	404 citations	933410 10 h-index	20 g-index
31	31	31	576
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymer-induced liquid precursors (PILPs) and bone regeneration., 2021,, 391-398.		1
2	Bioactive ceramics: Past and future. , 2021, , 377-388.		1
3	Thixotropic Hydrogels Composed of Self-Assembled Nanofibers of Double-Hydrophobic Elastin-Like Block Polypeptides. International Journal of Molecular Sciences, 2021, 22, 4104.	4.1	14
4	Organic modification of layered zirconium phosphate/phosphonate for controlled release of therapeutic inorganic ions. Science and Technology of Advanced Materials, 2021, 22, 1000-1012.	6.1	4
5	Preparation of layered calcium silicate organically modified with two types of functional groups for varying chemical stability. Journal of Asian Ceramic Societies, 2021, 9, 113-123.	2.3	4
6	Tearable and Fillable Composite Sponges Capable of Heat Generation and Drug Release in Response to Alternating Magnetic Field. Materials, 2020, 13, 3637.	2.9	5
7	Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism. Bulletin of the Chemical Society of Japan, 2020, 93, 701-707.	3.2	18
8	Human stem cell response to layered zirconium phosphate. RSC Advances, 2020, 10, 36051-36057.	3.6	3
9	Emerging Atomic Energy Levels in Zero-Dimensional Silicon Quantum Dots. Nano Letters, 2020, 20, 1491-1498.	9.1	27
10	Behaviour of calcium phosphate ester salts in a simulated body fluid modified with alkaline phosphatase: a new concept of ceramic biomaterials. Materials Advances, 2020, 1, 3215-3220.	5.4	3
11	Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides. International Journal of Molecular Sciences, 2019, 20, 6262.	4.1	7
12	Ring-Like Assembly of Silica Nanospheres in the Presence of Amphiphilic Block Copolymer: Effects of Particle Size. Langmuir, 2018, 34, 7751-7758.	3.5	11
13	Introduction of Alkylammonium into Calcium Silicate Hydrate Towards Application in Development of Novel Biomaterial. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 325-327.	0.2	O
14	Interphase coordination design in carbamate-siloxane/vaterite composite microparticles towards tuning ion-releasing properties. Advanced Powder Technology, 2017, 28, 1349-1355.	4.1	4
15	Preparation of carbamate-containing vaterite particles for strontium removal in wastewater treatment. Journal of Asian Ceramic Societies, 2017, 5, 364-369.	2.3	6
16	Origin of the Photoluminescence Quantum Yields Enhanced by Alkane-Termination of Freestanding Silicon Nanocrystals: Temperature-Dependence of Optical Properties. Scientific Reports, 2016, 6, 36951.	3.3	44
17	Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning. Nanoscale, 2016, 8, 9009-9019.	5.6	58
18	Enhancement of crystalline plane orientation in silsesquioxane-containing vaterite particles towards tuning of calcium ion release. Journal of Materials Chemistry B, 2014, 2, 1250.	5.8	10

#	Article	IF	CITATIONS
19	ToF-SIMS evaluation of calcium-containing silica \hat{I}^3 -PGA hybrid systems for bone regeneration. Applied Surface Science, 2014, 309, 231-239.	6.1	7
20	Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomaterialia, 2014, 10, 3733-3746.	8.3	95
21	Preparation of siloxane-containing vaterite doped with magnesium. Journal of the Ceramic Society of Japan, 2014, 122, 1010-1015.	1.1	7
22	Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine. Journal of Materials Chemistry B, 2013, 1, 4446.	5.8	38
23	Preparation of electrospun fiber mats using siloxaneâ€containing vaterite and biodegradable polymer hybrids for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1350-1358.	3.4	14
24	Preparation of siloxane-containing vaterite particles with red-blood-cell-like morphologies and incorporation of calcium-salt polylactide for bone regenerative medicine. Journal of the Ceramic Society of Japan, 2013, 121, 792-796.	1.1	5
25	Induction of hydroxycarbonate apatite formation on polyethylene or alumina substrates by spherical vaterite particles deposition. Materials Science and Engineering C, 2012, 32, 1976-1981.	7.3	2
26	MECHANICAL-TENSILE STRENGTHS AND CELL-PROLIFERATIVE ACTIVITIES OF ELECTROSPUN POLY(LACTIC-co-GLYCOLIC ACID) COMPOSITES CONTAINING ^ ^beta;-TRICALCIUM PHOSPHATE. Phosphorus Research Bulletin, 2012, 26, 109-112.	0.6	0
27	Effect of preparation route on the degradation behavior and ion releasability of siloxane-poly(lactic) Tj ETQq1 1 C 30, 232-238.).784314 i 1.8	gBT /Overlog 15
28	Silicate and Calcium Ions Releasing Biomaterials for Bone Reconstruction. Key Engineering Materials, 2011, 493-494, 561-565.	0.4	0
29	Preparation of siloxane-containing vaterite/poly (L-lactic acid) hybrid microbeads with silicate and calcium ions-releasing ability. Journal of the Ceramic Society of Japan, 2010, 118, 541-544.	1.1	1
30	PREPARATION OF SILOXANE-CONTAINING VATERITE â, POLY (LACTIC ACID) HYBRID BEADS BY ELECTROSPRAYING AND HA-COATING ON THEIR SURFACES. Phosphorus Research Bulletin, 2010, 24, 1-5.	0.6	0
31	Transformation behaviour of salts composed of calcium ions and phosphate esters with different linear alkyl chain structures in a simulated body fluid modified with alkaline phosphatase. Science and Technology of Advanced Materials, 0, , .	6.1	0