
Stefano Santoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7287425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Chemistry with Selenium Reagents: Development of Efficient Catalytic Reactions. Angewandte Chemie - International Edition, 2009, 48, 8409-8411.	7.2	311
2	Arylation with Unsymmetrical Diaryliodonium Salts: A Chemoselectivity Study. Chemistry - A European Journal, 2013, 19, 10334-10342.	1.7	220
3	Heterogeneous catalytic approaches in C–H activation reactions. Green Chemistry, 2016, 18, 3471-3493.	4.6	192
4	"The green side of the moon: ecofriendly aspects of organoselenium chemistry― RSC Advances, 2014, 4, 31521-31535.	1.7	169
5	Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chemistry, 2017, 19, 1601-1612.	4.6	169
6	Organoselenium Compounds as Catalysts in Nature and Laboratory. Current Organic Chemistry, 2010, 14, 2442-2462.	0.9	133
7	Enantioselective Conjugate Silyl Additions to α,βâ€Unsaturated Aldehydes Catalyzed by Combination of Transition Metal and Chiral Amine Catalysts. Advanced Synthesis and Catalysis, 2011, 353, 245-252.	2.1	119
8	Click-chemistry approaches to π-conjugated polymers for organic electronics applications. Chemical Science, 2016, 7, 6298-6308.	3.7	104
9	Ecoâ€Friendly Olefin Dihydroxylation Catalyzed by Diphenyl Diselenide. Advanced Synthesis and Catalysis, 2008, 350, 2881-2884.	2.1	102
10	C–H functionalization reactions under flow conditions. Chemical Society Reviews, 2019, 48, 2767-2782.	18.7	94
11	Heterogeneous palladium-catalysed Catellani reaction in biomass-derived Î ³ -valerolactone. Green Chemistry, 2016, 18, 5025-5030.	4.6	90
12	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90
13	Heterogeneous C–H alkenylations in continuous-flow: oxidative palladium-catalysis in a biomass-derived reaction medium. Green Chemistry, 2017, 19, 2510-2514.	4.6	89
14	Preparation of the First Bench‣table Phenyl Selenolate: an Interesting "On Water―Nucleophilic Reagent. European Journal of Organic Chemistry, 2008, 2008, 5387-5390.	1.2	81
15	Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology. Accounts of Chemical Research, 2016, 49, 1006-1018.	7.6	73
16	A Simple Zinc-Mediated Preparation of Selenols. Synlett, 2008, 2008, 1471-1474.	1.0	67
17	Enzyme-Like Catalysis via Ternary Complex Mechanism: Alkoxy-Bridged Dinuclear Cobalt Complex Mediates Chemoselective O-Esterification over N-Amidation. Journal of the American Chemical Society, 2013, 135, 6192-6199.	6.6	64
18	A continuous flow approach for the C–H functionalization of 1,2,3-triazoles in γ-valerolactone as a biomass-derived medium. Green Chemistry, 2018, 20, 2888-2893.	4.6	63

STEFANO SANTORO

#	Article	IF	CITATIONS
19	Theoretical Study of Mechanism and Stereoselectivity of Catalytic Kinugasa Reaction. Journal of Organic Chemistry, 2015, 80, 2649-2660.	1.7	48
20	Vinylic Substitutions Promoted by PhSeZnCl: Synthetic and Theoretical Investigations. European Journal of Organic Chemistry, 2009, 2009, 4921-4925.	1.2	46
21	Catalytic Asymmetric Reactions of 4â€Substituted Indoles with Nitroethene: A Direct Entry to Ergot Alkaloid Structures. Chemistry - A European Journal, 2015, 21, 17578-17582.	1.7	46
22	Theoretical Study of Mechanism and Selectivity of Copper-Catalyzed C–H Bond Amidation of Indoles. Journal of Organic Chemistry, 2011, 76, 9246-9252.	1.7	44
23	A general phosphoric acid-catalyzed desymmetrization of meso-aziridines with silylated selenium nucleophiles. Organic and Biomolecular Chemistry, 2011, 9, 6205.	1.5	44
24	Sustainable Approach to Waste-Minimized Sonogashira Cross-Coupling Reaction Based on Recoverable/Reusable Heterogeneous Catalytic/Base System and Acetonitrile Azeotrope. ACS Sustainable Chemistry and Engineering, 2016, 4, 7209-7216.	3.2	42
25	Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bioâ€Based Reaction Media. Chemistry - A European Journal, 2018, 24, 13383-13390.	1.7	42
26	Intramolecular Nonbonding Interactions between Selenium and Sulfur – Spectroscopic Evidence and Importance in Asymmetric Synthesis. European Journal of Organic Chemistry, 2006, 2006, 4867-4873.	1.2	39
27	Continuous flow/waste-minimized synthesis of benzoxazoles catalysed by heterogeneous manganese systems. Green Chemistry, 2019, 21, 5298-5305.	4.6	38
28	A waste-minimized protocol for copper-catalyzed Ullmann-type reaction in a biomass derived furfuryl alcohol/water azeotrope. Green Chemistry, 2018, 20, 1634-1639.	4.6	37
29	Waste-minimised copper-catalysed azide–alkyne cycloaddition in Polarclean as a reusable and safe reaction medium. Green Chemistry, 2018, 20, 183-187.	4.6	37
30	Searching for novel reusable biomass-derived solvents: furfuryl alcohol/water azeotrope as a medium for waste-minimised copper-catalysed azide–alkyne cycloaddition. Green Chemistry, 2016, 18, 6380-6386.	4.6	36
31	Mechanism of Palladium/Amine Cocatalyzed Carbocyclization of Aldehydes with Alkynes and Its Merging with "Pd Oxidase Catalysis― ACS Catalysis, 2014, 4, 4474-4484.	5.5	31
32	Synthesis of β yano Ketones Promoted by a Heterogeneous Fluoride Catalyst. Advanced Synthesis and Catalysis, 2016, 358, 2134-2139.	2.1	25
33	A Catalytic Peterson-like Synthesis of Alkenyl Nitriles. Organic Letters, 2016, 18, 2680-2683.	2.4	25
34	Diastereo and Enantioselective Synthesis of 1,2-Diols Promoted by Electrophilic Selenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 956-960.	0.8	23
35	Synthesis of enantiomerically pure β-azidoselenides starting from natural terpenes. Tetrahedron, 2007, 63, 12373-12378.	1.0	21
36	Agarsenone, a Cadinane Sesquiterpenoid from <i>Commiphora erythraea</i> . Journal of Natural Products, 2013, 76, 1254-1259.	1.5	21

STEFANO SANTORO

#	Article	IF	CITATIONS
37	Origins of Stereoselectivity in Peptide-Catalyzed Kinetic Resolution of Alcohols. ACS Catalysis, 2016, 6, 1165-1171.	5.5	20
38	PS-BEMP as a basic catalyst for the phospha-Michael addition to electron-poor alkenes. Organic and Biomolecular Chemistry, 2016, 14, 3521-3525.	1.5	20
39	Polarclean/Water as a Safe and Recoverable Medium for Selective C2-Arylation of Indoles Catalyzed by Pd/C. ACS Sustainable Chemistry and Engineering, 2020, 8, 16441-16450.	3.2	20
40	Synthetic studies on the solanacol ABC ring system by cation-initiated cascade cyclization: implications for strigolactone biosynthesis. Organic and Biomolecular Chemistry, 2011, 9, 5350.	1.5	19
41	Polarclean as a Sustainable Reaction Medium for the Waste Minimized Synthesis of Heterocyclic Compounds. Frontiers in Chemistry, 2018, 6, 659.	1.8	19
42	Enantioselective organocatalytic substitution of α-cyanoacetates on imidoyl chlorides – synthesis of optically active ketimines. Chemical Communications, 2007, , 5155.	2.2	17
43	Waste Minimized Multistep Preparation in Flow of \hat{l}^2 -Amino Acids Starting from \hat{l}_{\pm}, \hat{l}^2 -Unsaturated Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2015, 3, 1221-1226.	3.2	16
44	Waste-minimized synthesis of C2 functionalized quinolines exploiting iron-catalysed C–H activation. Green Chemistry, 2021, 23, 490-495.	4.6	15
45	Cationic Cyclization of 2-Alkenyl-1,3-dithiolanes: Diastereoselective Synthesis oftrans-Decalins. Journal of Organic Chemistry, 2011, 76, 3274-3285.	1.7	13
46	Oxidation of Alkynes in Aqueous Media Catalyzed by Diphenyl Diselenide. Synlett, 2010, 2010, 1402-1406.	1.0	12
47	Enantioselective Methoxyselenenylation of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Aldehydes. Synlett, 2009, 2009, 743-746.	1.0	11
48	Mechanism of the Kinugasa Reaction Revisited. Journal of Organic Chemistry, 2021, 86, 10665-10671.	1.7	11
49	Stereoselective functionalization of pyrrolidinone moiety towards the synthesis of salinosporamide A. Tetrahedron, 2012, 68, 6504-6512.	1.0	7
50	Mechanism and selectivity of rhodium atalyzed CH bond arylation of indoles. International Journal of Quantum Chemistry, 2018, 118, e25526.	1.0	7
51	Recent Applications of Solid-Supported Ammonium Fluorides in Organic Synthesis. Synthesis, 2017, 49, 973-980.	1.2	4
52	Pd/C-catalyzed aerobic oxidative C–H alkenylation of arenes in γ-valerolactone (GVL). Molecular Catalysis, 2021, 513, 111787.	1.0	4
53	Heterogeneous palladium-catalysed intramolecular C(sp3) H α-arylation for the green synthesis of oxindoles. Molecular Catalysis, 2022, 522, 112211.	1.0	2
54	Frontispiece: Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bio-Based Reaction Media. Chemistry - A European Journal, 2018, 24, .	1.7	0

#	Article	IF	CITATIONS
55	Green Reaction Media for Cross-Coupling Reactions: A Recent Overview and Possible Directions. Series on Chemistry, Energy and the Environment, 2018, , 177-204.	0.3	0