Zailei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7287303/publications.pdf Version: 2024-02-01

ΖΛΙΙ ΕΙ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Hydrogels with highly concentrated salt solution as electrolytes for solid-state supercapacitors with a suppressed self-discharge rate. Journal of Materials Chemistry A, 2022, 10, 2966-2972.	10.3	14
2	Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Materials, 2020, 24, 297-303.	18.0	29
3	Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochimica Acta, 2020, 357, 136855.	5.2	45
4	Platinum single-atom catalysts: a comparative review towards effective characterization. Catalysis Science and Technology, 2019, 9, 4821-4834.	4.1	122
5	Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy, 2019, 66, 104169.	16.0	41
6	In-Situ Capture of Mercury in Coal-Fired Power Plants Using High Surface Energy Fly Ash. Environmental Science & Technology, 2019, 53, 7913-7920.	10.0	56
7	High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators. Nano Energy, 2019, 55, 447-453.	16.0	54
8	Magnesium Anodes with Extended Cycling Stability for Lithiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1806400.	14.9	12
9	Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy, 2018, 47, 43-50.	16.0	183
10	Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries. ACS Nano, 2018, 12, 3587-3599.	14.6	74
11	Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nature Communications, 2017, 8, 16100.	12.8	545
12	Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Science China Materials, 2017, 60, 1215-1226.	6.3	9
13	One-dimensional Cu-based catalysts with layered Cu–Cu2O–CuO walls for the Rochow reaction. Nano Research, 2016, 9, 1377-1392.	10.4	42
14	Designed synthesis of MO _x (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, and Au nanoparticles supported on hierarchical CuO hollow structures. Nanoscale, 2016, 8, 19684-19695.	5.6	20
15	Porous (CuO) _x ZnO hollow spheres as efficient Rochow reaction catalysts. CrystEngComm, 2016, 18, 2808-2819.	2.6	11
16	Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener?. Journal of Materials Chemistry A, 2016, 4, 552-560.	10.3	88
17	High-performance nickel manganese ferrite/oxidized graphene composites as flexible and binder-free anodes for Li-ion batteries. RSC Advances, 2015, 5, 40018-40025.	3.6	8
18	Low ost Synthesis of Porous Silicon via Ferriteâ€Assisted Chemical Etching and Their Application as Siâ€Based Anodes for Liâ€Ion Batteries. Advanced Electronic Materials, 2015, 1, 1400059.	5.1	18

ZAILEI ZHANG

#	Article	IF	CITATIONS
19	Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5859-5865.	10.3	60
20	One-pot catalytic conversion of methanol to C6–C21 hydrocarbons over bi-functional MFe ₂ O ₄ (M = Ni, Zn, Mn, Co) catalysts. RSC Advances, 2015, 5, 13374-13384.	3.6	2
21	Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithium-ion batteries. RSC Advances, 2015, 5, 11115-11123.	3.6	35
22	Synergistic effect in bimetallic copper–silver (Cu _x Ag) nanoparticles enhances silicon conversion in Rochow reaction. RSC Advances, 2015, 5, 54364-54371.	3.6	38
23	Yolk Bishell Mn _{<i>x</i>} Co _{1–<i>x</i>} Fe ₂ O ₄ Hollow Microspheres and Their Embedded Form in Carbon for Highly Reversible Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 6300-6309.	8.0	63
24	Synthesis of porous microspheres composed of graphitized carbon@amorphous silicon/carbon layers as high performance anode materials for Li-ion batteries. RSC Advances, 2014, 4, 55010-55015.	3.6	6
25	Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as Highâ€Performance Anodes of Lithium Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 5165-5169.	13.8	175
26	Multiple transition metal oxide mesoporous nanospheres with controllable composition for lithium storage. Journal of Materials Chemistry A, 2014, 2, 5041-5050.	10.3	29
27	Controllably oxidized copper flakes as multicomponent copper-based catalysts for the Rochow reaction. RSC Advances, 2014, 4, 7826.	3.6	18
28	Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 10161.	10.3	75
29	Mn0.5Co0.5Fe2O4 nanoparticles highly dispersed in porous carbon microspheres as high performance anode materials in Li-ion batteries. Nanoscale, 2014, 6, 6805.	5.6	14
30	Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries. Nanoscale, 2014, 6, 371-377.	5.6	29
31	Scalable synthesis of porous silicon/carbon microspheres as improved anode materials for Li-ion batteries. RSC Advances, 2014, 4, 43114-43120.	3.6	28
32	Ni _{0.33} Mn _{0.33} Co _{0.33} Fe ₂ O ₄ nanoparticles anchored on oxidized carbon nanotubes as advanced anode materials in Li-ion batteries. RSC Advances, 2014, 4, 33769-33775.	3.6	4
33	Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries. Journal of Colloid and Interface Science, 2013, 398, 185-192.	9.4	145
34	Mesoporous CoFe2O4 nanospheres cross-linked by carbon nanotubes as high-performance anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7444.	10.3	118
35	Amorphous silicon–carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries. Nanoscale, 2013, 5, 5384. 	5.6	44
36	Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction. Catalysis Science and Technology, 2012, 2, 1207.	4.1	54

ZAILEI ZHANG

#	Article	IF	CITATIONS
37	Preparation of hierarchical dandelion-like CuO microspheres with enhanced catalytic performance for dimethyldichlorosilane synthesis. Catalysis Science and Technology, 2012, 2, 1953.	4.1	62
38	Flower-like CuO microspheres with enhanced catalytic performance for dimethyldichlorosilane synthesis. RSC Advances, 2012, 2, 2254.	3.6	44
39	Facile Solvothermal Synthesis of Porous Cubic Cu Microparticles as Copper Catalysts for Rochow Reaction. ACS Applied Materials & Interfaces, 2012, 4, 1295-1302.	8.0	48