Behzad Babaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/728721/publications.pdf

Version: 2024-02-01

759233 752698 21 532 12 20 h-index citations g-index papers 21 21 21 540 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The effect of dental restoration geometry and material properties on biomechanical behaviour of a treated molar tooth: A 3D finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104892.	3.1	13
2	Influence of thermal and thermomechanical stimuli on a molar tooth treated with resin-based restorative dental composites. Dental Materials, 2022, 38, 811-823.	3.5	10
3	The influence of dental restoration depth, internal cavity angle, and material properties on biomechanical resistance of a treated molar tooth. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105305.	3.1	6
4	Friction spot extrusion welding-brazing of copper to aluminum alloy. Materials Letters, 2021, 285, 129160.	2.6	26
5	Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mechanics Based Design of Structures and Machines, 2021, 49, 738-762.	4.7	101
6	A multi-objective optimization of stent geometries. Journal of Biomechanics, 2021, 125, 110575.	2.1	8
7	Effect of Nd:YAG Pulsed-Laser Welding Parameters on Melting Rate of GTD-111 Superalloy Joint. Journal of Materials Engineering and Performance, 2021, 30, 9108-9117.	2.5	9
8	Magnetic Resonance Elastography Reconstruction for Anisotropic Tissues. Medical Image Analysis, 2021, 74, 102212.	11.6	22
9	FWNNet: Presentation of a New Classifier of Brain Tumor Diagnosis Based on Fuzzy Logic and the Wavelet-Based Neural Network Using Machine-Learning Methods. Computational Intelligence and Neuroscience, 2021, 2021, 1-13.	1.7	32
10	The role of stirring time on the metallurgical and mechanical properties during modified friction stir clinching of AA6061-T6 and AA7075-T6 sheets. Results in Physics, 2020, 19, 103364.	4.1	9
11	Role of Mg ₂ Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg ₂ Si composite. Journal of Composite Materials, 2020, 54, 4035-4057.	2.4	50
12	Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 198-207.	3.1	15
13	The fibrous cellular microenvironment, and how cells make sense of a tangled web. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5772-5774.	7.1	12
14	Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 193-202.	3.1	23
15	Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry. Biomedical Optics Express, 2017, 8, 4663.	2.9	11
16	Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen. Acta Biomaterialia, 2016, 37, 28-37.	8.3	35
17	Microstructural properties and mechanics vary between bundles of the human anterior cruciate ligament during stress-relaxation. Journal of Biomechanics, 2016, 49, 87-93.	2.1	36
18	Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 32-41.	3.1	62

#	Article	IF	CITATIONS
19	A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials. Journal of the Royal Society Interface, 2015, 12, 20150707.	3.4	29
20	The ballistic resistance of multi-layered targets impacted by rigid projectiles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 208-217.	5.6	23
21	Fracture Behavior of GTD- 111 Superalloy during In Situ Tensile Scanning Electron Microscopy. Journal of Materials Engineering and Performance, 0, , .	2.5	O