
Susana Clusella-Trullas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/728698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	12.6	2,026
2	Standards for distribution models in biodiversity assessments. Science Advances, 2019, 5, eaat4858.	10.3	605
3	Upper thermal limits in terrestrial ectotherms: how constrained are they?. Functional Ecology, 2013, 27, 934-949.	3.6	519
4	Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 2014, 344, 1247579.	12.6	519
5	Climatic Predictors of Temperature Performance Curve Parameters in Ectotherms Imply Complex Responses to Climate Change. American Naturalist, 2011, 177, 738-751.	2.1	384
6	Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2935-2943.	2.6	380
7	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	2.1	298
8	The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biological Invasions, 2016, 18, 997-1044.	2.4	275
9	Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e551.	8.1	255
10	Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190036.	4.0	215
11	GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 2018, 5, 180022.	5.3	164
12	Lizard thermal trait variation at multiple scales: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 5-21.	1.5	154
13	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	10.4	154
14	The evolution of critical thermal limits of life on Earth. Nature Communications, 2021, 12, 1198.	12.8	149
15	Testing the thermal melanism hypothesis: a macrophysiological approach. Functional Ecology, 2008, 22, 232-238.	3.6	140
16	Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Global Change Biology, 2012, 18, 1253-1269.	9.5	136
17	Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera,) Tj ETQq1 1 0.7 54, 114-127.	'84314 rgl 2.0	BT /Overlock 131
18	Thermal consequences of colour and near-infrared reflectance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160345.	4.0	125

#	Article	IF	CITATIONS
19	Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Journal of Insect Physiology, 2010, 56, 822-830.	2.0	123
20	Navigating through the <scp>r</scp> packages for movement. Journal of Animal Ecology, 2020, 89, 248-267.	2.8	83
21	Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology, 2009, 90, 2297-2312.	3.2	76
22	The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). Journal of Insect Physiology, 2012, 58, 669-678.	2.0	73
23	Matching species traits to projected threats and opportunities from climate change. Journal of Biogeography, 2014, 41, 724-735.	3.0	72
24	Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Functional Ecology, 2017, 31, 856-865.	3.6	66
25	Directional Evolution of the Slope of the Metabolic Rate–Temperature Relationship Is Correlated with Climate. Physiological and Biochemical Zoology, 2009, 82, 495-503.	1.5	64
26	Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Global Ecology and Biogeography, 2014, 23, 76-88.	5.8	59
27	How useful are thermal vulnerability indices?. Trends in Ecology and Evolution, 2021, 36, 1000-1010.	8.7	59
28	Phenotypic plasticity of gas exchange pattern and water loss in <i>Scarabaeus spretus</i> (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. Journal of Experimental Biology, 2010, 213, 2940-2949.	1.7	57
29	Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biological Invasions, 2016, 18, 1105-1119.	2.4	56
30	Lack of coherence in the warming responses of marine crustaceans. Functional Ecology, 2014, 28, 895-903.	3.6	53
31	Drivers, impacts, mechanisms and adaptation in insect invasions. Biological Invasions, 2016, 18, 883-891.	2.4	53
32	Opportunities for behavioral rescue under rapid environmental change. Global Change Biology, 2019, 25, 3110-3120.	9.5	53
33	Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. , 2016, 4, cow053.		50
34	Parasites of Harmonia axyridis: current research and perspectives. BioControl, 2017, 62, 355-371.	2.0	47
35	Effects of nutrient and water restriction on thermal tolerance: A test of mechanisms and hypotheses. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 212, 15-23.	1.8	45
36	Comment on "Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches― Science, 2011, 332, 537-537.	12.6	44

#	Article	IF	CITATIONS
37	Conservation implications of omitting narrowâ€ranging taxa from species distribution models, now and in the future. Diversity and Distributions, 2014, 20, 1307-1320.	4.1	44
38	The Behavior-Physiology Nexus: Behavioral and Physiological Compensation Are Relied on to Different Extents between Seasons. Physiological and Biochemical Zoology, 2015, 88, 384-394.	1.5	40
39	Sexâ€specific effects of wind on the flight decisions of a sexually dimorphic soaring bird. Journal of Animal Ecology, 2020, 89, 1811-1823.	2.8	37
40	Phenotypic Plasticity of Locomotion Performance in the Seed HarvesterMessor capensis(Formicidae). Physiological and Biochemical Zoology, 2010, 83, 519-530.	1.5	36
41	The evolution of insect body coloration under changing climates. Current Opinion in Insect Science, 2020, 41, 25-32.	4.4	35
42	The evolutionary potential of an insect invader under climate change*. Evolution; International Journal of Organic Evolution, 2020, 74, 132-144.	2.3	33
43	Effects of temperature on heat-shock responses and survival of two species of marine invertebrates from sub-Antarctic Marion Island. Antarctic Science, 2014, 26, 145-152.	0.9	31
44	The Bogert Effect and environmental heterogeneity. Oecologia, 2019, 191, 817-827.	2.0	28
45	Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods in Ecology and Evolution, 2020, 11, 196-214.	5.2	26
46	Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evolutionary Ecology, 2010, 24, 601-616.	1.2	24
47	Impacts of invasive plants on animal diversity in South Africa: A synthesis. Bothalia, 2017, 47, .	0.3	24
48	Effects of within-generation thermal history on flight performance of <i>Ceratitis capitata</i> : colder is better. Journal of Experimental Biology, 2014, 217, 3545-56.	1.7	23
49	Thermal landscape change as a driver of ectotherm responses to plant invasions. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191020.	2.6	23
50	Rethinking the scale and formulation of indices assessing organism vulnerability to warmer habitats. Ecography, 2019, 42, 1024-1036.	4.5	23
51	The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector. Journal of Experimental Biology, 2016, 219, 1893-902.	1.7	22
52	Environmental temperature alters the overall digestive energetics and differentially affects dietary protein and lipid use in a lizard. Journal of Experimental Biology, 2019, 222, .	1.7	22
53	Infrasonic hearing in birds: a review of audiometry and hypothesized structure–function relationships. Biological Reviews, 2020, 95, 1036-1054.	10.4	22
54	Geographical bias in physiological data limits predictions of global change impacts. Functional Ecology, 2021, 35, 1572-1578.	3.6	22

#	Article	IF	CITATIONS
55	Plasticity of thermal tolerance and metabolism but not water loss in an invasive reed frog. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 189, 11-20.	1.8	21
56	Biotic Interactions as Mediators of Biological Invasions: Insights from South Africa. , 2020, , 387-427.		21
57	Niche shift and resource supplementation facilitate an amphibian range expansion. Diversity and Distributions, 2019, 25, 154-165.	4.1	20
58	Do projections from bioclimatic envelope models and climate change metrics match?. Global Ecology and Biogeography, 2016, 25, 65-74.	5.8	19
59	Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae). Die Naturwissenschaften, 2017, 104, 78.	1.6	19
60	Behavioral thermoregulation is highly repeatable and unaffected by digestive status in <i>Agama atra</i> . Integrative Zoology, 2018, 13, 482-493.	2.6	18
61	Farm dams facilitate amphibian invasion: Extraâ€limital range expansion of the painted reed frog in <scp>S</scp> outh <scp>A</scp> frica. Austral Ecology, 2013, 38, 851-863.	1.5	17
62	Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology. Journal of Experimental Biology, 2008, 211, 3139-3146.	1.7	15
63	Local adaptation for body color in Drosophila americana: commentary on Wittkopp et al Heredity, 2011, 106, 904-905.	2.6	14
64	Metabolic and water loss rates of two cryptic species in the African velvet worm genus Opisthopatus (Onychophora). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 323-332.	1.5	14
65	Thermal tolerance of Cyrtobagous salviniae: a biocontrol agent in a changing world. BioControl, 2014, 59, 357-366.	2.0	13
66	First finding of the parasitic fungus <i>Hesperomyces virescens</i> (Laboulbeniales) on native and invasive ladybirds (Coleoptera, Coccinellidae) in South Africa. Parasite, 2016, 23, 5.	2.0	13
67	Exotic trees modify the thermal landscape and food resources for lizard communities. Oecologia, 2016, 182, 1213-1225.	2.0	13
68	New Records of the Parasitic waspDinocampus coccinellae(Hymenoptera: Braconidae) and its Hosts in South Africa. African Entomology, 2014, 22, 226-229.	0.6	11
69	Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis. Evolutionary Ecology, 2020, 34, 555-572.	1.2	11
70	Sexual dimorphism and physiological correlates of horn length in a South African isopod crustacean. Journal of Zoology, 2016, 300, 99-110.	1.7	9
71	Mojave desert tortoise (<i>Gopherus agassizii</i>) thermal ecology and reproductive success along a rainfall cline. Integrative Zoology, 2015, 10, 282-294.	2.6	8
72	Untangling the structural and molecular mechanisms underlying colour and rapid colour change in a lizard, <i>Agama atra</i> . Molecular Ecology, 2021, 30, 2262-2284.	3.9	8

#	Article	IF	CITATIONS
73	Faecal analysis suggests generalist diets in three species of Western Cape cordylids. African Zoology, 2008, 43, 125-130.	0.4	6
74	Aquatic birds have middle ears adapted to amphibious lifestyles. Scientific Reports, 2022, 12, 5251.	3.3	6
75	How melanism affects the sensitivity of lizards to climate change. Functional Ecology, 2022, 36, 812-825.	3.6	5
76	Faecal analysis suggests generalist diets in three species of Western Cape cordylids. African Zoology, 2008, 43, 125-130.	0.4	4
77	Non-native populations and global invasion potential of the Indian bullfrog Hoplobatrachus tigerinus: a synthesis for risk-analysis. Biological Invasions, 2021, 23, 69-81.	2.4	4
78	Intra-specific variation of thermal performance, skin reflectance and body size partially co-vary with climate in a lizard. Biological Journal of the Linnean Society, 2021, 134, 111-125.	1.6	3
79	Predicted future changes in ocean temperature and pH do not affect prey selection by the girdled dogwhelk <i>Trochia cingulata</i> . African Journal of Marine Science, 2022, 44, 1-9.	1.1	3
80	First observation of a brood patch on a male sunbird (Chalcomitra amethystina). Journal of Ornithology, 2022, 163, 611-614.	1.1	1
81	OUP accepted manuscript. , 2022, 10, coac020.		1