
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7286808/publications.pdf Version: 2024-02-01

Тимылі Млі

#	Article	IF	CITATIONS
1	Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant and Soil, 2013, 372, 93-124.	3.7	238
2	Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 2017, 23, 4728-4738.	9.5	127
3	Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015, 70, 98-111.	4.1	125
4	Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Science of the Total Environment, 2019, 650, 1029-1040.	8.0	115
5	Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Science Reviews, 2019, 190, 398-415.	9.1	108
6	Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N ₂ O emissions. Global Change Biology, 2018, 24, e603-e616.	9.5	104
7	Advances in the understanding of nutrient dynamics and management in UK agriculture. Science of the Total Environment, 2012, 434, 39-50.	8.0	101
8	Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Science of the Total Environment, 2016, 562, 247-259.	8.0	85
9	Changes in soil microbial biomass with manure application in cropping systems: A meta-analysis. Soil and Tillage Research, 2019, 194, 104291.	5.6	85
10	Mineral N stock and nitrate accumulation in the 50 to 200 m profile on the Loess Plateau. Science of the Total Environment, 2018, 633, 999-1006.	8.0	67
11	Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance. European Journal of Agronomy, 2017, 88, 22-40.	4.1	58
12	Impact of two centuries of intensive agriculture on soil carbon, nitrogen and phosphorus cycling in the UK. Science of the Total Environment, 2018, 634, 1486-1504.	8.0	54
13	Key challenges and priorities for modelling European grasslands under climate change. Science of the Total Environment, 2016, 566-567, 851-864.	8.0	52
14	Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma, 2016, 265, 176-186.	5.1	50
15	Ensemble modelling of carbon fluxes in grasslands and croplands. Field Crops Research, 2020, 252, 107791.	5.1	50
16	Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis. European Journal of Agronomy, 2011, 34, 181-189.	4.1	48
17	Carbon Sequestration by Fruit Trees - Chinese Apple Orchards as an Example. PLoS ONE, 2012, 7, e38883.	2.5	48
18	Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Science of the Total Environment, 2017, 607-608, 911-919.	8.0	48

#	Article	IF	CITATIONS
19	Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.	6.1	47
20	Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in northern China. Agricultural and Forest Meteorology, 2018, 262, 310-321.	4.8	47
21	Performance of process-based models for simulation of grain N in crop rotations across Europe. Agricultural Systems, 2017, 154, 63-77.	6.1	43
22	A synthetic analysis of greenhouse gas emissions from manure amended agricultural soils in China. Scientific Reports, 2017, 7, 8123.	3.3	42
23	Soil aggregate-associated organic carbon dynamics subjected to different types of land use: Evidence from 13C natural abundance. Ecological Engineering, 2018, 122, 295-302.	3.6	40
24	Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. European Journal of Agronomy, 2017, 84, 152-165.	4.1	35
25	Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Scientific Reports, 2018, 8, 12346.	3.3	33
26	Peri-urbanization may vary with vegetation restoration: A large scale regional analysis. Urban Forestry and Urban Greening, 2018, 29, 77-87.	5.3	31
27	Soil C and N dynamics and hydrological processes in a maize-wheat rotation field subjected to different tillage and straw management practices. Agriculture, Ecosystems and Environment, 2019, 285, 106616.	5.3	31
28	A Modified SCS-CN Method Incorporating Storm Duration and Antecedent Soil Moisture Estimation for Runoff Prediction. Water Resources Management, 2017, 31, 1713-1727.	3.9	29
29	A synthetic analysis of livestock manure substitution effects on organic carbon changes in China's arable topsoil. Catena, 2018, 171, 1-10.	5.0	28
30	Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: A model approach. Journal of Environmental Management, 2016, 167, 105-114.	7.8	27
31	Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China's Loess Plateau. Catena, 2020, 184, 104243.	5.0	27
32	Climate change and N2O emissions from South West England grasslands: A modelling approach. Atmospheric Environment, 2016, 132, 249-257.	4.1	25
33	Tracing the Sources and Fate of NO ₃ [–] in the Vadose Zone–Groundwater System of a Thousand-Year-Cultivated Region. Environmental Science & Technology, 2022, 56, 9335-9345.	10.0	25
34	Impact of transition from permanent pasture to new swards on the nitrogen use efficiency, nitrogen and carbon budgets of beef and sheep production. Agriculture, Ecosystems and Environment, 2019, 283, 106572.	5.3	22
35	Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields. Scientific Reports, 2016, 6, 29333.	3.3	21
36	Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model. Science of the Total Environment, 2017, 603-604, 27-37.	8.0	21

#	Article	IF	CITATIONS
37	Modelling field scale spatial variation in water run-off, soil moisture, N2O emissions and herbage biomass of a grazed pasture using the SPACSYS model. Geoderma, 2018, 315, 49-58.	5.1	21
38	Simulating greenhouse gas emissions and stocks of carbon and nitrogen in soil from a long-term no-till system in the North China Plain. Soil and Tillage Research, 2018, 178, 32-40.	5.6	21
39	Prediction of stormâ€based nutrient loss incorporating the estimated runoff and soil loss at a slope scale on the Loess Plateau. Land Degradation and Development, 2018, 29, 2899-2910.	3.9	21
40	Composition and variation of soil δ15N stable isotope in natural ecosystems. Catena, 2019, 183, 104236.	5.0	21
41	A framework for the regional critical zone classification: the case of the Chinese Loess Plateau. National Science Review, 2019, 6, 14-18.	9.5	20
42	Adjustments of leaf traits and whole plant leaf area for balancing water supply and demand in Robinia pseudoacacia under different precipitation conditions on the Loess Plateau. Agricultural and Forest Meteorology, 2019, 279, 107733.	4.8	19
43	Sustainable grassland systems: a modelling perspective based on the <scp>N</scp> orth <scp>W</scp> yke <scp>F</scp> arm <scp>P</scp> latform. European Journal of Soil Science, 2016, 67, 397-408.	3.9	18
44	Soil compaction effects on litter decomposition in an arable field: Implications for management of crop residues and headlands. Applied Soil Ecology, 2019, 134, 31-37.	4.3	18
45	An evaluation of automated GPD threshold selection methods for hydrological extremes across different scales. Journal of Hydrology, 2020, 585, 124845.	5.4	17
46	A Review of Quantitative Tools for Assessing the Diffuse Pollution Response to Farmer Adaptations and Mitigation Methods Under Climate Change. Advances in Agronomy, 2011, , 1-54.	5.2	16
47	Climate change and environmental impacts on and adaptation strategies for production in wheat-rice rotations in southern China. Agricultural and Forest Meteorology, 2020, 292-293, 108136.	4.8	16
48	Permanent dry soil layer a critical control on soil desiccation on China's Loess Plateau. Scientific Reports, 2019, 9, 3296.	3.3	14
49	Modeling Biological Dinitrogen Fixation of Field Pea with a Processâ€Based Simulation Model. Agronomy Journal, 2013, 105, 670-678.	1.8	13
50	How shallow and how many points of measurements are sufficient to estimate the deep profile mean soil water content of a hillslope in the Loess Plateau?. Geoderma, 2018, 314, 85-94.	5.1	13
51	When multi-functional landscape meets Critical Zone science: advancing multi-disciplinary research for sustainable human well-being. National Science Review, 2019, 6, 349-358.	9.5	13
52	Modeling crop yield and nitrogen use efficiency in wheat and maize production systems under future climate change. Nutrient Cycling in Agroecosystems, 2019, 115, 117-136.	2.2	12
53	Simulation of Phosphorus Chemistry, Uptake and Utilisation by Winter Wheat. Plants, 2019, 8, 404.	3.5	11
54	Assessment of Nitrogen Uptake and Biological Nitrogen Fixation Responses of Soybean to Nitrogen Fertiliser with SPACSYS. Sustainability, 2020, 12, 5921.	3.2	9

#	Article	IF	CITATIONS
55	Adjusting for Conditional Bias in Process Model Simulations of Hydrological Extremes: An Experiment Using the North Wyke Farm Platform. Frontiers in Artificial Intelligence, 2020, 3, 565859.	3.4	9
56	Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model. Agricultural Water Management, 2021, 258, 107181.	5.6	9
57	A Yield-Related Agricultural Drought Index Reveals Spatio-Temporal Characteristics of Droughts in Southwestern China. Sustainability, 2019, 11, 714.	3.2	8
58	Climate Change Impacts on Crop Yield of Winter Wheat (Triticum aestivum) and Maize (Zea mays) and Soil Organic Carbon Stocks in Northern China. Agriculture (Switzerland), 2022, 12, 614.	3.1	7
59	Exploring the effects of land management change on productivity, carbon and nutrient balance: Application of an Ensemble Modelling Approach to the upper River Taw observatory, UK. Science of the Total Environment, 2022, 824, 153824.	8.0	5
60	A Sensitivity Analysis of the SPACSYS Model. Agriculture (Switzerland), 2021, 11, 624.	3.1	4
61	Elucidating the performance of hybrid models for predicting extreme water flow events through variography and wavelet analyses. Journal of Hydrology, 2021, 598, 126442.	5.4	4
62	Future climate change impacts on mulched maize production in an arid irrigation area. Agricultural Water Management, 2022, 266, 107550.	5.6	3
63	Modelling the impact of environmental changes on grassland systems with SPACSYS. Advances in Animal Biosciences, 2015, 6, 37-39.	1.0	2
64	Historic record of pasture soil water and the influence of the North Atlantic Oscillation in south-west England. Hydrology Research, 2017, 48, 277-294.	2.7	2
65	The Forgotten Semantics of Regression Modeling in Geography. Geographical Analysis, 2021, 53, 113-134.	3.5	2
66	A case study on the effects of data temporal resolution on the simulation of water flux extremes using a process-based model at the grassland field scale. Agricultural Water Management, 2021, 255, 107049.	5.6	2
67	Impacts of field margin orientation on populations of soilâ€dwelling invertebrates in relation to the direction and intensity of field traffic. Soil Use and Management, 0, , .	4.9	1