
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7286599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Posaconazole inhibits multiple steps of the alphavirus replication cycle. Antiviral Research, 2022, 197, 105223.	1.9	4
2	The critical role of funders in shrinking the carbon footprint of research. Lancet Planetary Health, The, 2022, 6, e4-e6.	5.1	8
3	SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell, 2022, 29, 217-231.e8.	5.2	146
4	The calcium channel inhibitor lacidipine inhibits Zika virus replication in neural progenitor cells. Antiviral Research, 2022, 202, 105313.	1.9	5
5	Cationic Geminoid Peptide Amphiphiles Inhibit DENV2 Protease, Furin, and Viral Replication. Molecules, 2022, 27, 3217.	1.7	1
6	SARS-CoV-2 RNA in exhaled air of hospitalized COVID-19 patients. Scientific Reports, 2022, 12, .	1.6	3
7	Berberine and Obatoclax Inhibit SARS-Cov-2 Replication in Primary Human Nasal Epithelial Cells In Vitro. Viruses, 2021, 13, 282.	1.5	50
8	Population genomics in the arboviral vector <i>Aedes aegypti</i> reveals the genomic architecture and evolution of endogenous viral elements. Molecular Ecology, 2021, 30, 1594-1611.	2.0	37
9	ITN—VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics. Viruses, 2021, 13, 766.	1.5	5
10	PIWI proteomics identifies Atari and Pasilla as piRNA biogenesis factors in Aedes mosquitoes. Cell Reports, 2021, 35, 109073.	2.9	14
11	Neutrophil Extracellular Traps in Dengue Are Mainly Generated NOX-Independently. Frontiers in Immunology, 2021, 12, 629167.	2.2	17
12	Endogenous piRNA-guided slicing triggers responder and trailer piRNA production from viral RNA in <i>Aedes aegypti</i> mosquitoes. Nucleic Acids Research, 2021, 49, 8886-8899.	6.5	14
13	A piRNA-IncRNA regulatory network initiates responder and trailer piRNA formation during mosquito embryonic development. Rna, 2021, 27, 1155-1172.	1.6	12
14	Zooming in on targets of mosquito small RNAs. Trends in Parasitology, 2021, 37, 687-689.	1.5	0
15	Interferon gamma immunotherapy in five critically ill COVID-19 patients with impaired cellular immunity: A case series. Med, 2021, 2, 1163-1170.e2.	2.2	31
16	Increased Plasma Heparanase Activity and Endothelial Glycocalyx Degradation in Dengue Patients Is Associated With Plasma Leakage. Frontiers in Immunology, 2021, 12, 759570.	2.2	2
17	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	1.8	26
18	Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries. Current Biology, 2020, 30, 3495-3506.e6.	1.8	88

#	Article	IF	CITATIONS
19	Improved reference genome of the arboviral vector Aedes albopictus. Genome Biology, 2020, 21, 215.	3.8	65
20	Countering Counter-Defense to Antiviral RNAi. Trends in Microbiology, 2020, 28, 600-602.	3.5	1
21	Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Advances in Virus Research, 2020, 107, 1-36.	0.9	9
22	A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature, 2020, 580, 274-277.	13.7	90
23	Agua Salud alphavirus defines a novel lineage of insect-specific alphaviruses discovered in the New World. Journal of General Virology, 2020, 101, 96-104.	1.3	32
24	No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Scientific Reports, 2019, 9, 13752.	1.6	17
25	The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in <i>Aedes</i> mosquitoes. Nucleic Acids Research, 2019, 47, 2546-2559.	6.5	35
26	Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses, 2019, 11, 448.	1.5	67
27	Mosquito Small RNA Responses to West Nile and Insect-Specific Virus Infections in Aedes and Culex Mosquito Cells. Viruses, 2019, 11, 271.	1.5	72
28	Desialylation of platelets induced by Von Willebrand Factor is a novel mechanism of platelet clearance in dengue. PLoS Pathogens, 2019, 15, e1007500.	2.1	36
29	The histone methyltransferase G9a regulates tolerance to oxidative stress–induced energy consumption. PLoS Biology, 2019, 17, e2006146.	2.6	21
30	Peroxisome-associated Sgroppino links fat metabolism with survival after RNA virus infection in Drosophila. Scientific Reports, 2019, 9, 2065.	1.6	13
31	A DNA virus-encoded immune antagonist fully masks the potent antiviral activity of RNAi in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24296-24302.	3.3	16
32	Induction and Suppression of NF-κB Signalling by a DNA Virus of <i>Drosophila</i> . Journal of Virology, 2019, 93, .	1.5	35
33	Crossing the Mucosal Barrier: A Commensal Bacterium Gives Dengue Virus a Leg-Up in the Mosquito Midgut. Cell Host and Microbe, 2019, 25, 1-2.	5.1	11
34	Insect Virus Discovery by Metagenomic and Cell Culture-Based Approaches. Methods in Molecular Biology, 2018, 1746, 197-213.	0.4	6
35	Viral suppressors of RNAi employ a rapid screening mode to discriminate viral RNA from cellular small RNA. Nucleic Acids Research, 2018, 46, 3187-3197.	6.5	8
36	Posaconazole inhibits dengue virus replication by targeting oxysterol-binding protein. Antiviral Research, 2018, 157, 68-79.	1.9	32

#	Article	IF	CITATIONS
37	Natural Variation in Resistance to Virus Infection in Dipteran Insects. Viruses, 2018, 10, 118.	1.5	66
38	Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics, 2017, 18, 207.	1.2	100
39	Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense. Current Opinion in Insect Science, 2017, 22, 16-27.	2.2	71
40	Human to human transmission of arthropod-borne pathogens. Current Opinion in Virology, 2017, 22, 13-21.	2.6	22
41	Single-Molecule Fluorescence Study of RNA Recognition by Viral RNAi Suppressors. Biophysical Journal, 2017, 112, 151a.	0.2	Ο
42	Escaping Host Factor PI4KB Inhibition: Enterovirus Genomic RNA Replication in the Absence of Replication Organelles. Cell Reports, 2017, 21, 587-599.	2.9	41
43	Deletion of Cytoplasmic Double-Stranded RNA Sensors Does Not Uncover Viral Small Interfering RNA Production in Human Cells. MSphere, 2017, 2, .	1.3	19
44	Histone-derived piRNA biogenesis depends on the ping-pong partners Piwi5 and Ago3 inAedes aegypti. Nucleic Acids Research, 2017, 45, gkw1368.	6.5	29
45	Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics, 2017, 18, 512.	1.2	138
46	PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes. PLoS Pathogens, 2016, 12, e1006017.	2.1	151
47	Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Journal of Virology, 2016, 90, 10145-10159.	1.5	99
48	Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404. Antimicrobial Agents and Chemotherapy, 2016, 60, 2554-2557.	1.4	18
49	Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs. PLoS Neglected Tropical Diseases, 2016, 10, e0004452.	1.3	113
50	Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in <i>Aedes aegypti</i> mosquito cells. Nucleic Acids Research, 2015, 43, 6545-6556.	6.5	154
51	Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health, 2015, 1, 31-36.	1.5	103
52	The heat shock response restricts virus infection in Drosophila. Scientific Reports, 2015, 5, 12758.	1.6	86
53	Analysis of resistance and tolerance to virus infection in Drosophila. Nature Protocols, 2015, 10, 1084-1097.	5.5	41
54	The Epigenetic Regulator G9a Mediates Tolerance to RNA Virus Infection in Drosophila. PLoS Pathogens, 2015, 11, e1004692.	2.1	106

#	Article	IF	CITATIONS
55	Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi. PLoS Pathogens, 2014, 10, e1004256.	2.1	75
56	Mosquito and <i>Drosophila</i> entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. Nucleic Acids Research, 2014, 42, 8732-8744.	6.5	91
57	A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response. Nucleic Acids Research, 2014, 42, 12237-12248.	6.5	44
58	The long and short of antiviral defense: small RNA-based immunity in insects. Current Opinion in Virology, 2014, 7, 19-28.	2.6	222
59	A Unique Nodavirus with Novel Features: Mosinovirus Expresses Two Subgenomic RNAs, a Capsid Gene of Unknown Origin, and a Suppressor of the Antiviral RNA Interference Pathway. Journal of Virology, 2014, 88, 13447-13459.	1.5	41
60	Regulation of microRNA biogenesis and turnover by animals and their viruses. Cellular and Molecular Life Sciences, 2013, 70, 3525-3544.	2.4	76
61	Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Research, 2013, 99, 165-171.	1.9	86
62	Beyond RNAi: Antiviral defense strategies in Drosophila and mosquito. Journal of Insect Physiology, 2013, 59, 159-170.	0.9	125
63	Small RNAs tackle large viruses: RNA interference-based antiviral defense against DNA viruses in insects. Fly, 2013, 7, 216-223.	0.9	15
64	Convergent Evolution of Argonaute-2 Slicer Antagonism in Two Distinct Insect RNA Viruses. PLoS Pathogens, 2012, 8, e1002872.	2.1	86
65	The DNA virus Invertebrate iridescent virus 6 is a target of the <i>Drosophila</i> RNAi machinery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3604-13.	3.3	132
66	MDA5 Detects the Double-Stranded RNA Replicative Form in Picornavirus-Infected Cells. Cell Reports, 2012, 2, 1187-1196.	2.9	190
67	Arbovirus-Derived piRNAs Exhibit a Ping-Pong Signature in Mosquito Cells. PLoS ONE, 2012, 7, e30861.	1.1	184
68	Defense and Counterdefense in the RNAi-Based Antiviral Immune System in Insects. Methods in Molecular Biology, 2011, 721, 3-22.	0.4	34
69	Identification of Viral Suppressors of RNAi by a Reporter Assay in Drosophila S2 Cell Culture. Methods in Molecular Biology, 2011, 721, 201-213.	0.4	27
70	Small Silencing RNAs: Piecing Together a Viral Genome. Cell Host and Microbe, 2010, 7, 87-89.	5.1	14
71	Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature, 2009, 458, 346-350.	13.7	243
72	Small RNAs and the control of transposons and viruses in Drosophila. Trends in Microbiology, 2009, 17, 163-171.	3.5	77

5

#	Article	IF	CITATIONS
73	Virus meets RNAi. EMBO Reports, 2008, 9, 725-729.	2.0	15
74	The Complex Interactions of Viruses and the RNAi Machinery: A Driving Force in Viral Evolution. , 2008, , 161-181.		3
75	The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biology, 2006, 8, 793-802.	4.6	470
76	The silent treatment: RNAi as a defense against virus infection in mammals. Trends in Biotechnology, 2006, 24, 186-193.	4.9	82
77	The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes and Development, 2006, 20, 2985-2995.	2.7	511
78	Natural controlled HIV infection: Preserved HIV-specific immunity despite undetectable replication competent virus. Virology, 2005, 339, 70-80.	1.1	33
79	MOLECULAR BIOLOGY: Enjoy the Silence. Science, 2004, 303, 1978-1979.	6.0	3
80	In Vivo Evolution of X4 Human Immunodeficiency Virus Type 1 Variants in the Natural Course of Infection Coincides with Decreasing Sensitivity to CXCR4 Antagonists. Journal of Virology, 2004, 78, 2722-2728.	1.5	37
81	RNA silencing in viral infections: insights from poliovirus. Virus Research, 2004, 102, 11-17.	1.1	39
82	Evolution of R5 and X4 human immunodeficiency virus type 1 gag sequences in vivo: evidence for recombination. Virology, 2003, 314, 451-459.	1.1	27
83	Early Viral Load and CD4+T Cell Count, But Not Percentage of CCR5+or CXCR4+CD4+T Cells, Are Associated with R5-to-X4 HIV Type 1 Virus Evolution. AIDS Research and Human Retroviruses, 2003, 19, 389-398.	0.5	26
84	Association between an interleukin-4 promoter polymorphism and the acquisition of CXCR4 using HIV-1 variants. Aids, 2003, 17, 981-985.	1.0	23
85	Dynamics of the pool of infected resting CD4 HLA-DR- T lymphocytes in patients who started a triple class five-drug antiretroviral regimen during primary HIV-1 infection. Antiviral Therapy, 2003, 8, 137-42.	0.6	5
86	Both R5 and X4 Human Immunodeficiency Virus Type 1 Variants Persist during Prolonged Therapy with Five Antiretroviral Drugs. Journal of Virology, 2002, 76, 3054-3058.	1.5	15
87	CC Chemokine Receptor 5 Δ32 and CC Chemokine Receptor 2 64I Polymorphisms Do Not Influence the Virologic and Immunologic Response to Antiretroviral Combination Therapy in Human Immunodeficiency Virus Type 1–Infected Patients. Journal of Infectious Diseases, 2002, 186, 1726-1732.	1.9	29
88	Cell turnover and cell tropism in HIV-1 infection. Trends in Microbiology, 2002, 10, 275-278.	3.5	29
89	Host Genetic Factors in the Clinical Course of HIV-1 Infection: Chemokines and Chemokine Receptors. Public Health Genomics, 2002, 5, 88-101.	1.0	5
90	Persistence of Viral HLA-DR ⁻ CD4 T-Cell Reservoir during Prolonged Treatment of HIV-1 Infection with a Five-Drug Regimen. Antiviral Therapy, 2002, 7, 37-41.	0.6	11

#	Article	IF	CITATIONS
91	Differential coreceptor expression allows for independent evolution of non–syncytium-inducing and syncytium-inducing HIV-1. Journal of Clinical Investigation, 2000, 106, 1039-1052.	3.9	76
92	Differential coreceptor expression allows for independent evolution of non-syncytium-inducing and syncytium-inducing HIV-1. Journal of Clinical Investigation, 2000, 106, 1569-1569.	3.9	26
93	Adaptation to Promiscuous Usage of Chemokine Receptors Is Not a Prerequisite for Human Immunodeficiency Virus Type 1 Disease Progression. Journal of Infectious Diseases, 1999, 180, 1106-1115.	1.9	87
94	Reduced Prevalence of the CCR5 Δ32 Heterozygous Genotype in Human Immunodeficiency Virus–Infected Individuals with AIDS Dementia Complex. Journal of Infectious Diseases, 1999, 180, 854-857.	1.9	49
95	Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. Aids, 1999, 13, 2405-2410.	1.0	206
96	CC-chemokine receptor variants, SDF-1 polymorphism, and disease progression in 720 HIV-infected patient. Aids, 1999, 13, 624.	1.0	25
97	Role of CCR2 Genotype in the Clinical Course of Syncytiumâ€Inducing (SI) or Nonâ€SI Human Immunodeficiency Virus Type 1 Infection and in the Time to Conversion to SI Virus Variants. Journal of Infectious Diseases, 1998, 178, 1806-1811.	1.9	69