Minghao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7286489/publications.pdf Version: 2024-02-01

Миксило Ц

#	Article	IF	CITATIONS
1	Replacement strategies for non-green dipolar aprotic solvents. Green Chemistry, 2020, 22, 6240-6257.	9.0	102
2	Facile construction of densely functionalized 4H-chromenes via three-component reactions catalyzed by l-proline. Green Chemistry, 2012, 14, 2421.	9.0	88
3	Three omponent Reactions of Aromatic Aldehydes and Two Different Nucleophiles and their Leaving Abilityâ€Determined Downstream Conversions of the Products. Advanced Synthesis and Catalysis, 2014, 356, 537-556.	4.3	83
4	Multicomponent Reactions of 1,3 yclohexanediones and Formaldehyde in Glycerol: Stabilization of Paraformaldehyde in Glycerol Resulted from using Dimedone as Substrate. Advanced Synthesis and Catalysis, 2010, 352, 519-530.	4.3	78
5	Multicomponent reactions of 1,3-disubstituted 5-pyrazolones and formaldehyde in environmentally benign solvent systems and their variations with more fundamental substrates. Green Chemistry, 2010, 12, 908.	9.0	77
6	Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chemistry, 2011, 13, 2204.	9.0	69
7	Aerobic copper-catalyzed decarboxylative thiolation. Chemical Communications, 2016, 52, 8733-8736.	4.1	62
8	Silver-Mediated Oxidative Decarboxylative Trifluoromethylthiolation of Coumarin-3-carboxylic Acids. Organic Letters, 2017, 19, 638-641.	4.6	59
9	Multicomponent Reactions of βâ€Ketosulfones and Formaldehyde in a Bioâ€Based Binary Mixture Solvent System Composed of Meglumine and Gluconic Acid Aqueous Solution. Advanced Synthesis and Catalysis, 2012, 354, 688-700.	4.3	44
10	Fe(OTf) ₃ â€Catalyzed αâ€Benzylation of Aryl Methyl Ketones with Electrophilic Secondary and Aryl Alcohols. Chemistry - an Asian Journal, 2014, 9, 268-274.	3.3	42
11	Reversible Alkylation of Dimedone with Aldehyde: A Neglected Way for Maximizing Selectivity of Threeâ€Component Reactions of Dimedone and an Aldehyde. Advanced Synthesis and Catalysis, 2012, 354, 2484-2494.	4.3	40
12	A Sulfoneâ€Containing Imidazoliumâ€Based BrÃ,nsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate. Advanced Synthesis and Catalysis, 2019, 361, 3342-3350.	4.3	39
13	Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system. Chinese Journal of Catalysis, 2019, 40, 1135-1140.	14.0	34
14	Ring-opening reactions of 2-aryl-3, 4-dihydropyrans with nucleophiles. Chemical Communications, 2011, 47, 4529.	4.1	29
15	Manganese Chloride as an Efficient Catalyst for Selective Transformations of Indoles in the Presence of a Keto Carbonyl Group. Advanced Synthesis and Catalysis, 2011, 353, 1551-1564.	4.3	28
16	An Alternative to Nitromethane as Solvent: The Promoting Influence of Nitroâ€Functionalized Imidazolium Salts for Synthesis and Catalysis. Advanced Synthesis and Catalysis, 2011, 353, 3473-3484.	4.3	26
17	Novel Nonâ€ŧoxic and Nonâ€hazardous Solvent Systems for the Chemistry of Indoles: Use of a Sulfone ontaining BrÃ,nsted Acid Ionic Liquid Catalyst in Butyl Acetate. ChemCatChem, 2019, 11, 4403-4410.	3.7	25
18	Ring-Opening Reactions of 2-Alkoxy-3,4-dihydropyrans with Thiols or Thiophenols. Organic Letters, 2011, 13, 1064-1067.	4.6	24

Minghao Li

#	Article	IF	CITATIONS
19	Eco-efficient synthesis of 2-quinaldic acids from furfural. Green Chemistry, 2019, 21, 4650-4655.	9.0	23
20	Synthesis of Multisubstituted Pyrroles from Enolizable Aldehydes and Primary Amines Promoted by Iodine. Journal of Organic Chemistry, 2019, 84, 5655-5666.	3.2	21
21	Molecular chaperone HspB2 inhibited pancreatic cancer cell proliferation via activating p53 downstream gene RPRM, BAI1, and TSAP6. Journal of Cellular Biochemistry, 2020, 121, 2318-2329.	2.6	19
22	Gluconic acid aqueous solution: a task-specific bio-based solvent for ring-opening reactions of dihydropyrans. Tetrahedron, 2013, 69, 1057-1064.	1.9	18
23	Impact of Using Exopolysaccharides (EPS)-Producing Strain on Qualities of Half-Fat Cheddar Cheese. International Journal of Food Properties, 2015, 18, 1546-1559.	3.0	17
24	2-Methylindole as an Indicative Nucleophile for Developing a Three-Component Reaction of Aldehyde with Two Different Nucleophiles. ACS Combinatorial Science, 2014, 16, 287-292.	3.8	16
25	2-Aryl-3,4-dihydropyrans as building blocks for organic synthesis: ring-opening reactions with nucleophiles. Tetrahedron, 2011, 67, 8314-8320.	1.9	14
26	Isomaltooligosaccharide increases the <i><scp>L</scp>actobacillus rhamnosus</i> viable count in <scp>C</scp> heddar cheese. International Journal of Dairy Technology, 2015, 68, 389-398.	2.8	13
27	4-Aminoindoles as 1,4-bisnucleophiles for diversity-oriented synthesis of tricyclic indoles bearing 3,4-fused seven-membered rings. Organic and Biomolecular Chemistry, 2019, 17, 5982-5989.	2.8	13
28	Interference Adsorption Mechanisms of Dimethoate, Metalaxyl, Atrazine, Malathion and Prometryn in a Sediment System Containing Coexisting Pesticides/Heavy Metals Based on Fractional Factor Design(Resolution V) Assisted by 2D-QSAR. Chemical Research in Chinese Universities, 2018, 34, 397-407.	2.6	10
29	Acid-catalyzed cleavage of C–C bonds enables atropaldehyde acetals as masked C2 electrophiles for organic synthesis. Chemical Communications, 2021, 57, 10431-10434.	4.1	9
30	Replacing halogenated solvents by a butyl acetate solution of bisphenol S in the transformations of indoles. Green Chemistry, 2021, 23, 3588-3594.	9.0	9
31	Synthesis of indoles and carbazoles from a lignin model compound α-hydroxyacetophenone. Green Chemistry, 2022, 24, 2919-2926.	9.0	9
32	Modular Synthesis of Bicyclic and Tricyclic (Azaâ€) Arenes from Nucleophilic (Azaâ€)Arenes with Electrophilic Side Arms via [4+2] Annulation Reactions. Advanced Synthesis and Catalysis, 2019, 361, 4369-4378.	4.3	7
33	A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogen-containing heterocycles. Beilstein Journal of Organic Chemistry, 2020, 16, 2888-2902.	2.2	7
34	Dipolar HCP materials as alternatives to DMF solvent for azide-based synthesis. Green Chemistry, 2021, 23, 7499-7505.	9.0	7
35	Acidâ€Acidâ€Catalyzed Tandem Reactions Driven by an Additiveâ€Like Component. Chemical Record, 2021, 21, 87-115.	5.8	6
36	Sc(OTf)3-catalyzed synthesis of polysubstituted furans from acylacetonitriles and renewable acetol. Green Synthesis and Catalysis, 2022, 3, 380-384.	6.8	6

Minghao Li

#	Article	IF	CITATIONS
37	Synthesis of α-indolylacrylates as potential anticancer agents using a BrÃnsted acid ionic liquid catalyst and the butyl acetate solvent. RSC Advances, 2020, 10, 13507-13516.	3.6	4
38	Three-component reactions of aromatic amines, 1,3-dicarbonyl compounds, and α-bromoacetaldehyde acetal to access <i>N</i> -(hetero)aryl-4,5-unsubstituted pyrroles. Beilstein Journal of Organic Chemistry, 2020, 16, 2920-2928.	2.2	2
39	Acid-catalyzed chemodivergent reactions of 2,2-dimethoxyacetaldehyde and anilines. Chinese Chemical Letters, 2021, 32, 1419-1422.	9.0	2
40	Direct synthesis of N-aryl/alkyl 3-carbonylpyrroles from the Morita–Baylis–Hillman acetate of 2,2-dimethoxyacetaldehyde and a primary amine. Green Chemistry, 2021, 23, 9465-9469.	9.0	2
41	Twoâ€Step Access to β â€Substituted o â€Hydroxyphenyl Ethyl Ketones from 4â€Chromanone and its Application in Preparation of a Silicaâ€Supported Cobalt(II) Salen Complex. Advanced Synthesis and Catalysis, 2021, 363, 4754.	n 4.3	1
42	MOFâ€Supported Copper Complex atalyzed Synthesis of Unsymmetrical 1,3â€Diynes Without External Additives. ChemCatChem, 0, , .	3.7	1
43	Front Cover Picture: A Sulfone ontaining Imidazoliumâ€Based BrÃ,nsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate (Adv. Synth. Catal. 14/2019). Advanced Synthesis and Catalysis, 2019, 361, 3239-3239.	4.3	0