
A M Fiore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7286476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research, 2001, 106, 23073-23095.	3.3	1,927
2	Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	846
3	Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research, 2006, 111, .	3.3	743
4	Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 2020, 10, 277-286.	8.1	436
5	Multimodel estimates of intercontinental sourceâ€receptor relationships for ozone pollution. Journal of Geophysical Research, 2009, 114, .	3.3	430
6	Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.	18.7	428
7	A multi-model assessment of pollution transport to the Arctic. Atmospheric Chemistry and Physics, 2008, 8, 5353-5372.	1.9	419
8	An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical Research, 2002, 107, ACH 9-1.	3.3	355
9	Background ozone over the United States in summer: Origin, trend, and contribution to pollution episodes. Journal of Geophysical Research, 2002, 107, ACH 11-1.	3.3	353
10	Mapping isoprene emissions over North America using formaldehyde column observations from space. Journal of Geophysical Research, 2003, 108, .	3.3	346
11	Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 2008, 8, 1723-1735.	1.9	346
12	The Clobal Atmospheric Environment for the Next Generation. Environmental Science & Technology, 2006, 40, 3586-3594.	4.6	338
13	Air Quality and Climate Connections. Journal of the Air and Waste Management Association, 2015, 65, 645-685.	0.9	322
14	Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment. Journal of Geophysical Research, 2001, 106, 14539-14550.	3.3	318
15	Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 5277-5298.	1.9	288
16	Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. Journal of Geophysical Research, 2006, 111, .	3.3	254
17	Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	253
18	Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters, 2002, 29, 25-1-25-4.	1.5	220

#	Article	IF	CITATIONS
19	Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. Journal of Geophysical Research, 2012, 117, .	3.3	219
20	Transport of Asian ozone pollution into surface air over the western United States in spring. Journal of Geophysical Research, 2012, 117, .	3.3	218
21	US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics, 2017, 17, 2943-2970.	1.9	218
22	Global health benefits of mitigating ozone pollution with methane emission controls. Proceedings of the United States of America, 2006, 103, 3988-3993.	3.3	210
23	Observational constraints on the chemistry of isoprene nitrates over the eastern United States. Journal of Geophysical Research, 2007, 112, .	3.3	200
24	Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	196
25	Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 2014, 94, 647-662.	1.9	186
26	Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions. Nature Communications, 2015, 6, 7105.	5.8	186
27	Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elementa, 2018, 6, .	1.1	177
28	Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	175
29	Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	174
30	Variability in surface ozone background over the United States: Implications for air quality policy. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	168
31	Evaluating a Spaceâ€Based Indicator of Surface Ozoneâ€NO _{<i>x</i>} â€VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10-461.	1.2	165
32	Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States. Journal of Geophysical Research, 2005, 110, .	3.3	163
33	Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere. Journal of Geophysical Research, 1998, 103, 13435-13450.	3.3	159
34	Modelling future changes in surface ozone: a parameterized approach. Atmospheric Chemistry and Physics, 2012, 12, 2037-2054.	1.9	155
35	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	12.2	153
36	Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability. Nature Geoscience, 2014, 7, 136-143.	5.4	151

#	Article	IF	CITATIONS
37	Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmospheric Environment, 2018, 172, 83-92.	1.9	150
38	Impacts of climate change on surface ozone and intercontinental ozone pollution: A multiâ€model study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3744-3763.	1.2	149
39	The influence of foreign vs. North American emissions on surface ozone in the US. Atmospheric Chemistry and Physics, 2009, 9, 5027-5042.	1.9	141
40	Observed suppression of ozone formation at extremely high temperatures due to chemical and biophysical feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19685-19690.	3.3	133
41	Inferring Changes in Summertime Surface Ozone–NO _{<i>x</i>} –VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environmental Science & Technology, 2020, 54, 6518-6529.	4.6	133
42	Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. Journal of Geophysical Research, 2008, 113, .	3.3	128
43	Multi-model ensemble simulations of tropospheric NO ₂ compared with GOME retrievals for the year 2000. Atmospheric Chemistry and Physics, 2006, 6, 2943-2979.	1.9	127
44	Intercontinental Impacts of Ozone Pollution on Human Mortality. Environmental Science & Technology, 2009, 43, 6482-6487.	4.6	126
45	A tropospheric ozone maximum over the Middle East. Geophysical Research Letters, 2001, 28, 3235-3238.	1.5	122
46	Trends in exceedances of the ozone air quality standard in the continental United States, 1980–1998. Atmospheric Environment, 2001, 35, 3217-3228.	1.9	112
47	Intercontinental Transport of Air Pollution:  Will Emerging Science Lead to a New Hemispheric Treaty?. Environmental Science & Technology, 2003, 37, 4535-4542.	4.6	106
48	Tropospheric methane in the tropics – first year from IASI hyperspectral infrared observations. Atmospheric Chemistry and Physics, 2009, 9, 6337-6350.	1.9	103
49	Impact of preindustrial to presentâ€day changes in shortâ€lived pollutant emissions on atmospheric composition and climate forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8086-8110.	1.2	103
50	The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing. Journal of Geophysical Research, 2012, 117, .	3.3	97
51	Long-term trends in ground level ozone over the contiguous United States, 1980-1995. Journal of Geophysical Research, 1998, 103, 1471-1480.	3.3	93
52	Increasing background ozone in surface air over the United States. Geophysical Research Letters, 2000, 27, 3465-3468.	1.5	91
53	Impacts of 21st century climate change on global air pollution-related premature mortality. Climatic Change, 2013, 121, 239-253.	1.7	91
54	Quantifying pollution inflow and outflow over East Asia in spring with regional and global models. Atmospheric Chemistry and Physics, 2010, 10, 4221-4239.	1.9	87

#	Article	lF	CITATIONS
55	The influence of European pollution on ozone in the Near East and northern Africa. Atmospheric Chemistry and Physics, 2008, 8, 2267-2283.	1.9	86
56	Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling. Reviews of Geophysics, 2020, 58, e2019RG000670.	9.0	86
57	Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56.	1.1	80
58	Application of empirical orthogonal functions to evaluate ozone simulations with regional and global models. Journal of Geophysical Research, 2003, 108, .	3.3	77
59	A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophysical Research Letters, 2008, 35, .	1.5	76
60	Management of Tropospheric Ozone by Reducing Methane Emissions. Environmental Science & Technology, 2005, 39, 4685-4691.	4.6	73
61	Methods, availability, and applications of PM _{2.5} exposure estimates derived from ground measurements, satellite, and atmospheric models. Journal of the Air and Waste Management Association, 2019, 69, 1391-1414.	0.9	73
62	A multi-model analysis of vertical ozone profiles. Atmospheric Chemistry and Physics, 2010, 10, 5759-5783.	1.9	70
63	Impact of meteorology and emissions on methane trends, 1990–2004. Geophysical Research Letters, 2006, 33, .	1.5	67
64	Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality. Air Quality, Atmosphere and Health, 2014, 7, 369-379.	1.5	64
65	Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions. Geophysical Research Letters, 2009, 36, .	1.5	63
66	Ozone air quality measurement requirements for a geostationary satellite mission. Atmospheric Environment, 2011, 45, 7143-7150.	1.9	61
67	Surface ozone variability and the jet position: Implications for projecting future air quality. Geophysical Research Letters, 2013, 40, 2839-2844.	1.5	60
68	Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions. Geophysical Research Letters, 2007, 34, .	1.5	59
69	Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth. Atmospheric Environment, 2009, 43, 4327-4338.	1.9	59
70	Interannual variability in ozone removal by a temperate deciduous forest. Geophysical Research Letters, 2017, 44, 542-552.	1.5	56
71	Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics, 2010, 10, 5361-5370.	1.9	54
72	Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100. Atmospheric Chemistry and Physics, 2012, 12, 12021-12036.	1.9	54

#	Article	IF	CITATIONS
73	Urban versus rural health impacts attributable to PM _{2.5} and O ₃ in northern India. Environmental Research Letters, 2018, 13, 064010.	2.2	54
74	Future ozone-related acute excess mortality under climate and population change scenarios in China: A modeling study. PLoS Medicine, 2018, 15, e1002598.	3.9	54
75	Increasing global agricultural production by reducing ozone damages via methane emission controls and ozoneâ€resistant cultivar selection. Global Change Biology, 2013, 19, 1285-1299.	4.2	53
76	North American isoprene influence on intercontinental ozone pollution. Atmospheric Chemistry and Physics, 2011, 11, 1697-1710.	1.9	51
77	Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
78	The impacts of changing transport and precipitation on pollutant distributions in a future climate. Journal of Geophysical Research, 2011, 116, .	3.3	47
79	Projecting policyâ€relevant metrics for high summertime ozone pollution events over the eastern United States due to climate and emission changes during the 21st century. Journal of Geophysical Research D: Atmospheres, 2015, 120, 784-800.	1.2	46
80	Effect of regional precursor emission controls on long-range ozone transport – Part 2: Steady-state changes in ozone air quality and impacts on human mortality. Atmospheric Chemistry and Physics, 2009, 9, 6095-6107.	1.9	45
81	Twentyâ€first century reversal of the surface ozone seasonal cycle over the northeastern United States. Geophysical Research Letters, 2014, 41, 7343-7350.	1.5	44
82	Detection of trends in surface ozone in the presence of climate variability. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6112-6129.	1.2	44
83	Timing and seasonality of the United States â€~warming hole'. Environmental Research Letters, 2017, 12, 034008.	2.2	44
84	Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S Journal of Geophysical Research D: Atmospheres, 2014, 119, 324-340.	1.2	43
85	Investigating the Causes of Increased Twentieth-Century Fall Precipitation over the Southeastern United States. Journal of Climate, 2019, 32, 575-590.	1.2	41
86	Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations. Atmospheric Chemistry and Physics, 2014, 14, 6261-6271.	1.9	40
87	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	1.7	39
88	The role of OH production in interpreting the variability of CH ₂ O columns in the southeast U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 478-493.	1.2	38
89	Connecting regional aerosol emissions reductions to local and remote precipitation responses. Atmospheric Chemistry and Physics, 2018, 18, 12461-12475.	1.9	38
90	Summertime cyclones over the Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone pollution. Atmospheric Chemistry and Physics, 2013, 13, 565-578.	1.9	37

#	Article	IF	CITATIONS
91	Sensitivity of tropospheric oxidants to biomass burning emissions: implications for radiative forcing. Geophysical Research Letters, 2013, 40, 1241-1246.	1.5	36
92	Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality. Atmospheric Chemistry and Physics, 2009, 9, 6077-6093.	1.9	35
93	Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission. Atmospheric Chemistry and Physics, 2018, 18, 16809-16828.	1.9	34
94	Influence of Dynamic Ozone Dry Deposition on Ozone Pollution. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032398.	1.2	34
95	Multimodel precipitation responses to removal of U.S. sulfur dioxide emissions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5024-5038.	1.2	32
96	Global atmospheric chemistry – which air matters. Atmospheric Chemistry and Physics, 2017, 17, 9081-9102.	1.9	32
97	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	1.9	30
98	Comparison of multiple PM _{2.5} exposure products for estimating health benefits of emission controls over New York State, USA. Environmental Research Letters, 2019, 14, 084023.	2.2	30
99	Average versus high surface ozoneÂlevels over the continental USA: model bias, background influences, and interannual variability. Atmospheric Chemistry and Physics, 2018, 18, 12123-12140.	1.9	27
100	Changes in the frequency and return level of high ozone pollution events over the eastern United States following emission controls. Environmental Research Letters, 2013, 8, 014012.	2.2	26
101	Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth. Atmospheric Chemistry and Physics, 2019, 19, 295-313.	1.9	26
102	Using Satellites to Track Indicators of Global Air Pollution and Climate Change Impacts: Lessons Learned From a NASA‧upported Science‧takeholder Collaborative. GeoHealth, 2020, 4, e2020GH000270.	1.9	25
103	Local and remote mean and extreme temperature response to regional aerosol emissions reductions. Atmospheric Chemistry and Physics, 2020, 20, 3009-3027.	1.9	25
104	Role of emission controls in reducing the 2050 climate change penalty for PM2.5 in China. Science of the Total Environment, 2021, 765, 144338.	3.9	25
105	Satellite Monitoring for Air Quality and Health. Annual Review of Biomedical Data Science, 2021, 4, 417-447.	2.8	25
106	Sensitivity of the NO _{<i>y</i>} budget over the United States to anthropogenic and lightning NO _{<i>x</i>} in summer. Journal of Geophysical Research, 2010, 115, .	3.3	24
107	Temperature and Precipitation Extremes in the United States: Quantifying the Responses to Anthropogenic Aerosols and Greenhouse Gases,+. Journal of Climate, 2016, 29, 2689-2701.	1.2	24
108	Spatiotemporal Controls on Observed Daytime Ozone Deposition Velocity Over Northeastern U.S. Forests During Summer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5612-5628.	1.2	24

#	Article	IF	CITATIONS
109	Mid-21st century ozone air quality and health burden in China under emissions scenarios and climate change. Environmental Research Letters, 2019, 14, 074030.	2.2	22
110	Constraints on the sources of tropospheric ozone from210Pb-7Be-O3correlations. Journal of Geophysical Research, 2004, 109, .	3.3	21
111	Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality. Climatic Change, 2012, 114, 441-461.	1.7	21
112	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 2020, 101, E1743-E1760.	1.7	21
113	No equatorial divide for a cleansing radical. Nature, 2014, 513, 176-178.	13.7	17
114	Transport of radonâ€⊋22 and methyl iodide by deep convection in the GFDL Global Atmospheric Model AM2. Journal of Geophysical Research, 2007, 112, .	3.3	16
115	Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2773-2796.	1.2	15
116	How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmospheric Measurement Techniques, 2018, 11, 2653-2668.	1.2	15
117	Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers. Atmospheric Chemistry and Physics, 2021, 21, 6481-6508.	1.9	15
118	Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
119	Estimating the contribution of strong daily export events to total pollutant export from the United States in summer. Journal of Geophysical Research, 2009, 114, .	3.3	13
120	Sensitivity of Tropospheric Ozone Over the Southeast USA to Dry Deposition. Geophysical Research Letters, 2020, 47, e2020GL087158.	1.5	11
121	Stomatal conductance influences interannual variability and long-term changes in regional cumulative plant uptake of ozone. Environmental Research Letters, 2020, 15, 114059.	2.2	11
122	Combining model projections with site-level observations to estimate changes in distributions and seasonality of ozone in surface air over the U.S.A Atmospheric Environment, 2018, 193, 302-315.	1.9	9
123	Evaluating Drought Responses of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and Temperature. Geophysical Research Letters, 2021, 48, e2020GL091520.	1.5	9
124	Characterizing Changes in Eastern U.S. Pollution Events in a Warming World. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
125	Using synthetic tracers as a proxy for summertime PM _{2.5} air quality over the Northeastern United States in physical climate models. Geophysical Research Letters, 2013, 40, 755-760.	1.5	5
126	Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements. Atmospheric Chemistry and Physics, 2021, 21, 13729-13746.	1.9	4

#	Article	IF	CITATIONS
127	Response to Comment on "Intercontinental Transport of Air Pollution: Will Emerging Science Lead to a New Hemispheric Treaty?â€: Environmental Science & Technology, 2004, 38, 1914-1914.	4.6	3
128	Peroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships. Atmospheric Chemistry and Physics, 2018, 18, 15345-15361.	1.9	3
129	Impact of regional Northern Hemisphere mid-latitude anthropogenic sulfur dioxide emissions on local and remote tropospheric oxidants. Atmospheric Chemistry and Physics, 2021, 21, 6799-6810.	1.9	3
130	Short-term PM2.5 and cardiovascular admissions in NY State: assessing sensitivity to exposure model choice. Environmental Health, 2021, 20, 93.	1.7	3
131	The Importance of Sampling Variability in Assessments of ENSOâ€PM 2.5 Relationships: A Case Study for the South Central United States. Geophysical Research Letters, 2019, 46, 6878-6884.	1.5	2
132	<title>Tropospheric formaldehyde measurements from the ESA GOME instrument</title> . , 2001, 4150, 1.		0