
Vladimir V Egorov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7286151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum–Classical Mechanics: Nano-Resonance in Polymethine Dyes. Mathematics, 2022, 10, 1443.	2.2	4
2	Quantum–classical mechanics: On the problem of a two-photon resonance band shape in polymethine dyes. Nano Structures Nano Objects, 2021, 25, 100650.	3.5	3
3	Dynamic Symmetry in Dozy-Chaos Mechanics. Symmetry, 2020, 12, 1856.	2.2	4
4	Dozy-Chaos Mechanics for a Broad Audience. Challenges, 2020, 11, 16.	1.7	4
5	Quantum-Classical Electron as an Organizing Principle in Nature. International Journal of Science Technology and Society, 2020, 8, 93.	0.1	3
6	Quantum-classical mechanics: Luminescence spectra in polymethine dyes and J-aggregates. Nature of the small Stokes shift. Results in Physics, 2019, 13, 102252.	4.1	5
7	Quantum-classical mechanics as an alternative to quantum mechanics in molecular and chemical physics. Heliyon, 2019, 5, e02579.	3.2	8
8	Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates. Royal Society Open Science, 2017, 4, 160550.	2.4	18
9	Nature of the narrow optical band in H*-aggregates: Dozy-chaos–exciton coupling. AlP Advances, 2014, 4, .	1.3	10
10	Optical lineshapes for dimers of polymethine dyes: dozy-chaos theory of quantum transitions and Frenkel exciton effect. RSC Advances, 2013, 3, 4598.	3.6	12
11	Dozy Chaos in Chemistry: Simplicity in Complexity. , 2013, , 219-224.		5
12	Discovery of Dozy Chaos and Discovery of Quanta: Analogy Being in Science and Perhaps in Human Progress. , 2013, , 41-46.		5
13	Optical line shapes for polymethine dyes and their aggregates: Novel theory of quantum transitions and its correlation with experiment. Journal of Luminescence, 2011, 131, 543-547.	3.1	14
14	Theory of the J-band: From the Frenkel exciton to charge transfer. Physics Procedia, 2009, 2, 223-326.	1.2	39
15	Title is missing!. Physics-Uspekhi, 2007, 50, 985.	2.2	52
16	Nature of the optical transition in polymethine dyes andJ-aggregates. Journal of Chemical Physics, 2002, 116, 3090-3103.	3.0	32
17	Electron-transfer approach to the nature of the optical lineshape for molecular J-aggregates. Chemical Physics Letters, 2001, 336, 284-291.	2.6	24
18	On electrodynamics of extended multiphonon transitions and nature of the J-band. Chemical Physics, 2001, 269, 251-283.	1.9	28

#	Article	IF	CITATIONS
19	The superexchange through virtual phonons in the dynamics of elementary electron transfer from excited electronic states of aggregated molecules. Journal of Luminescence, 1998, 76-77, 544-547.	3.1	4
20	Electron transfer in thin organic films: Failure of the Born-Oppenheimer and Franck-Condon approximations, and collective phenomena. Materials Science and Engineering C, 1998, 5, 321-326.	7.3	3
21	Electron transfer in condensed media: Failure of the Born-Oppenheimer and Franck-Condon approximations, collective phenomena and detailed balance relationship. Computational and Theoretical Chemistry, 1997, 398-399, 121-127.	1.5	9
22	Tunnel luminescence: Failure of the Born-Oppenheimer and Franck-Condon approximations and collective phenomena. Journal of Luminescence, 1997, 72-74, 871-873.	3.1	4
23	On electron transfer in Langmuir-Blodgett films. Thin Solid Films, 1996, 284-285, 932-935.	1.8	13