
Yong-Le Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7286034/publications.pdf Version: 2024-02-01

YONG F PAN

#	Article	IF	CITATIONS
1	Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology, 2020, 54, 465-495.	3.1	144
2	Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser. Optics Letters, 1999, 24, 116.	3.3	111
3	Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon. Atmospheric Environment, 2004, 38, 1657-1672.	4.1	97
4	290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. Optics Express, 2005, 13, 9548.	3.4	91
5	Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Optics Express, 2012, 20, 5325.	3.4	84
6	Singleâ€particle laserâ€inducedâ€fluorescence spectra of biological and other organicâ€carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. Journal of Geophysical Research, 2007, 112, .	3.3	75
7	Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results. Optics Express, 2010, 18, 12436.	3.4	74
8	Characterizing and monitoring respiratory aerosols by light scattering. Optics Letters, 2003, 28, 589.	3.3	69
9	Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153, 4-12.	2.3	63
10	Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity. Applied Optics, 2001, 40, 3005.	2.1	58
11	Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles. Sensors, 2015, 15, 19021-19046.	3.8	56
12	Particle-Fluorescence Spectrometer for Real-Time Single-Particle Measurements of Atmospheric Organic Carbon and Biological Aerosol. Environmental Science & Technology, 2009, 43, 429-434.	10.0	47
13	Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria. Optics Express, 2013, 21, 22285.	3.4	44
14	High-speed, high-sensitivity aerosol fluorescence spectrum detection using a 32-anode photomultiplier tube detector. Review of Scientific Instruments, 2001, 72, 1831.	1.3	43
15	A Puff of Air Sorts Bioaerosols for Pathogen Identification. Aerosol Science and Technology, 2004, 38, 598-602.	3.1	38
16	Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. Optics Express, 2008, 16, 16523.	3.4	37
17	Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 157, 54-70.	2.3	31
18	Application of light-emitting diodes for aerosol fluorescence detection. Optics Letters, 2003, 28, 1707.	3.3	28

Yong-Le Pan

#	Article	IF	CITATIONS
19	Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy. Applied Optics, 2017, 56, 6577.	1.8	28
20	Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133, 538-550.	2.3	26
21	Optical trapping and laser-spectroscopy measurements of single particles in air: a review. Measurement Science and Technology, 2021, 32, 102005.	2.6	26
22	Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory. Optics Express, 2014, 22, 8165.	3.4	25
23	Atmospheric aging processes of bioaerosols under laboratory-controlled conditions: A review. Journal of Aerosol Science, 2021, 155, 105767.	3.8	21
24	Clustered and integrated fluorescence spectra from single atmospheric aerosol particles excited by a 263- and 351-nm laser at New Haven, CT, and Adelphi, MD. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 2213-2221.	2.3	20
25	Raman scattering and red fluorescence in the photochemical transformation of dry tryptophan particles. Optics Express, 2016, 24, 11654.	3.4	17
26	Liquid–liquid phase separation and evaporation of a laser-trapped organic–organic airborne droplet using temporal spatial-resolved Raman spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 19151-19159.	2.8	15
27	Optical-trapping of particles in air using parabolic reflectors and a hollow laser beam. Optics Express, 2019, 27, 33061.	3.4	14
28	Review of elastic light scattering from single aerosol particles and application in bioaerosol detection. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 279, 108067.	2.3	14
29	Position-resolved Raman spectra from a laser-trapped single airborne chemical droplet. Optics Letters, 2017, 42, 5113.	3.3	13
30	Single-particle optical-trapping Raman spectroscopy for the detection and identification of aerosolized airborne biological particles. Measurement Science and Technology, 2021, 32, 055207.	2.6	13
31	Optical-Trapping Laser Techniques for Characterizing Airborne Aerosol Particles and Its Application in Chemical Aerosol Study. Micromachines, 2021, 12, 466.	2.9	13
32	Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria: errata. Optics Express, 2014, 22, 22817.	3.4	11
33	Changes of fluorescence spectra and viability from aging aerosolized <i>E. coli</i> cells under various laboratory-controlled conditions in an advanced rotating drum. Aerosol Science and Technology, 2019, 53, 1261-1276.	3.1	10
34	Study of single airborne particle using laser-trapped submicron position-resolved temporal Raman spectroscopy. Chemical Physics Letters, 2018, 706, 255-260.	2.6	8
35	Selective Deflection and Localization of Flowing Aerosols onto a Substrate. Aerosol Science and Technology, 2006, 40, 218-225.	3.1	7
36	Opto-aerodynamic focusing of aerosol particles. Aerosol Science and Technology, 2018, 52, 13-18.	3.1	7

Yong-Le Pan

#	Article	IF	CITATIONS
37	Characterization of single fungal aerosol particles in a reactive atmospheric environment using time-resolved optical trapping- Raman spectroscopy (OT-RS). Environmental Science Atmospheres, 0, , .	2.4	7
38	Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits. Applied Physics B: Lasers and Optics, 2013, 112, 89-98.	2.2	6
39	Measurement of circular intensity differential scattering (CIDS) from single airborne aerosol particles for bioaerosol detection and identification. Optics Express, 2022, 30, 1442.	3.4	5
40	Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm. Analytica Chimica Acta, 2014, 820, 119-132.	5.4	3
41	Richard K. Chang: In memoriam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107273.	2.3	1
42	Highly efficient prism coupling to whispering gallery modes of a square $\hat{l}^1\!\!/\!\!4$ -cavity. , 0, , .		0
43	An Optical Excursion from Micro-Fibers to Semiconductor Micro-Lasers. Microscopy and Microanalysis, 2003, 9, 1054-1055.	0.4	0
44	Bioaerosol enricher and identifier system: From fluorescence spectrum to biochemical assay. , 2006, , .		0
45	Real-time monitoring of atmospheric aerosol at New Haven, CT for fluorescence spectra, particle size and concentration. , 2007, , .		0
46	Elastic-Light Scattering for the Characterization of Respirable Aerosols. , 2007, , .		0
47	Real-time monitoring of atmospheric aerosol at New Haven, CT for fluorescence spectra, particle size and concentration. , 2007, , .		0
48	Elastic-light scattering for the characterization of respirable aerosols. , 2007, , .		0