Sachin Kotak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7285810/publications.pdf

Version: 2024-02-01

20 papers 2,942 citations

567281 15 h-index 752698 20 g-index

23 all docs 23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

3523 citing authors

#	Article	IF	CITATIONS
1	Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings. Planta, 2020, 251, 26.	3.2	18
2	NuMA interaction with chromatin is vital for proper chromosome decondensation at the mitotic exit. Molecular Biology of the Cell, 2020, 31, 2437-2451.	2.1	5
3	PP2A-B55 \hat{l}^3 counteracts Cdk1 and regulates proper spindle orientation through cortical dynein adaptor NuMA. Journal of Cell Science, 2020, 133, .	2.0	11
4	Centrosome Aurora A gradient ensures single polarity axis in C. elegans embryos. Biochemical Society Transactions, 2020, 48, 1243-1253.	3.4	3
5	Centrosome Aurora A regulates RhoGEF ECT-2 localisation and ensures a single PAR-2 polarity axis in <i>C. elegans</i>	2.5	26
6	Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells. Biomolecules, 2019, 9, 80.	4.0	39
7	Plk1 regulates spindle orientation by phosphorylating NuMA in human cells. Life Science Alliance, 2018, 1, e201800223.	2.8	28
8	Mitotic Spindle: Illuminating Spindle Positioning with a Biological Lightsaber. Current Biology, 2018, 28, R1308-R1310.	3.9	2
9	Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening. Journal of Medicinal Chemistry, 2016, 59, 7188-7211.	6.4	57
10	Aurora A kinase regulates proper spindle positioning in <i>C. elegans</i> and in human cells. Journal of Cell Science, 2016, 129, 3015-25.	2.0	43
11	NuMA phosphorylation dictates dynein-dependent spindle positioning. Cell Cycle, 2014, 13, 177-178.	2.6	16
12	NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO Journal, 2014, 33, 1815-1830.	7.8	64
13	NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. EMBO Journal, 2013, 32, 2517-2529.	7.8	93
14	Mechanisms of spindle positioning: cortical force generators in the limelight. Current Opinion in Cell Biology, 2013, 25, 741-748.	5.4	152
15	MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. Journal of Cell Biology, 2013 , 200 , 773 - 787 .	5.2	65
16	Cortical dynein is critical for proper spindle positioning in human cells. Journal of Cell Biology, 2012, 199, 97-110.	5.2	208
17	A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis. Plant Cell, 2007, 19, 182-195.	6.6	257
18	Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007, 10, 310-316.	7.1	1,129

SACHIN KOTAK

#	Article	IF	CITATIONS
19	Characterization of C-terminal domains of Arabidopsisheat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant Journal, 2004, 39, 98-112.	5.7	258
20	Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 2004, 29, 471-487.	1.1	466