
## **Kimberly Stegmaier**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7285349/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499, 214-218.                                                             | 27.8 | 4,761     |
| 2  | Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, 2017, 49, 1779-1784.             | 21.4 | 1,436     |
| 3  | Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition. Cancer Discovery, 2013, 3, 308-323.                                                                         | 9.4  | 549       |
| 4  | Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer<br>Discovery, 2016, 6, 914-929.                                             | 9.4  | 485       |
| 5  | The Genomic Landscape of Pediatric Ewing Sarcoma. Cancer Discovery, 2014, 4, 1326-1341.                                                                                    | 9.4  | 415       |
| 6  | An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.<br>Nature Genetics, 2014, 46, 364-370.                                   | 21.4 | 333       |
| 7  | Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Scientific Data, 2014, 1, 140035. | 5.3  | 328       |
| 8  | Gene expression–based high-throughput screening(GE-HTS) and application to leukemia<br>differentiation. Nature Genetics, 2004, 36, 257-263.                                | 21.4 | 276       |
| 9  | The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice.<br>Cancer Cell, 2016, 29, 574-586.                                      | 16.8 | 227       |
| 10 | EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature, 2018, 555, 387-391.                                                     | 27.8 | 222       |
| 11 | Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nature Genetics, 2018, 50, 1240-1246.                   | 21.4 | 199       |
| 12 | Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in<br>Advanced Pediatric Solid Tumors. JAMA Oncology, 2016, 2, 608.             | 7.1  | 172       |
| 13 | Proteomic and Genetic Approaches Identify Syk as an AML Target. Cancer Cell, 2009, 16, 281-294.                                                                            | 16.8 | 140       |
| 14 | Complementary Genomic Screens Identify SERCA as a Therapeutic Target in NOTCH1 Mutated Cancer.<br>Cancer Cell, 2013, 23, 390-405.                                          | 16.8 | 130       |
| 15 | Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nature<br>Communications, 2020, 11, 4687.                                            | 12.8 | 129       |
| 16 | Signature-Based Small Molecule Screening Identifies Cytosine Arabinoside as an EWS/FLI Modulator in Ewing Sarcoma. PLoS Medicine, 2007, 4, e122.                           | 8.4  | 129       |
| 17 | SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 226-242.                                                                             | 16.8 | 126       |
| 18 | Targeting MTHFD2 in acute myeloid leukemia. Journal of Experimental Medicine, 2016, 213, 1285-1306.                                                                        | 8.5  | 118       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nature Genetics, 2014, 46, 618-623.                             | 21.4 | 117       |
| 20 | CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. Journal of Clinical Investigation, 2017, 128, 446-462.                                                                          | 8.2  | 117       |
| 21 | EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell, 2018, 33, 202-216.e6.                                                                                       | 16.8 | 116       |
| 22 | The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia. Journal of Clinical Investigation, 2012, 122, 935-947.                                | 8.2  | 96        |
| 23 | Selective HDAC1/HDAC2 Inhibitors Induce Neuroblastoma Differentiation. Chemistry and Biology, 2013, 20, 713-725.                                                                                              | 6.0  | 89        |
| 24 | Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute<br>Myeloid Leukemia. Cancer Cell, 2017, 31, 549-562.e11.                                                     | 16.8 | 89        |
| 25 | Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia. Clinical<br>Cancer Research, 2017, 23, 1012-1024.                                                               | 7.0  | 88        |
| 26 | Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and<br>osteosarcoma: a report from the Children's Oncology Group. British Journal of Cancer, 2018, 119,<br>615-621. | 6.4  | 83        |
| 27 | The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nature<br>Medicine, 2017, 23, 301-313.                                                                      | 30.7 | 79        |
| 28 | A first-generation pediatric cancer dependency map. Nature Genetics, 2021, 53, 529-538.                                                                                                                       | 21.4 | 76        |
| 29 | Molecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in <i>ALK</i> -mutated neuroblastoma. Oncotarget, 2014, 5, 8737-8749.                                      | 1.8  | 72        |
| 30 | Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias.<br>Cancer Cell, 2019, 35, 664-676.e7.                                                                       | 16.8 | 70        |
| 31 | Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.                       | 13.2 | 70        |
| 32 | Exploiting an Asp-Glu "switch―in glycogen synthase kinase 3 to design paralog-selective inhibitors for<br>use in acute myeloid leukemia. Science Translational Medicine, 2018, 10, .                          | 12.4 | 69        |
| 33 | A Combination CDK4/6 and IGF1R Inhibitor Strategy for Ewing Sarcoma. Clinical Cancer Research, 2019, 25, 1343-1357.                                                                                           | 7.0  | 69        |
| 34 | Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Scientific<br>Reports, 2020, 10, 5324.                                                                               | 3.3  | 69        |
| 35 | Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget, 2015, 6, 30178-30193.                                      | 1.8  | 68        |
| 36 | EP300 Selectively Controls the Enhancer Landscape of <i>MYCN</i> -Amplified Neuroblastoma. Cancer Discovery, 2022, 12, 730-751.                                                                               | 9.4  | 64        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Resistance to Epigenetic-Targeted Therapy Engenders Tumor Cell Vulnerabilities Associated with<br>Enhancer Remodeling. Cancer Cell, 2018, 34, 922-938.e7.                                      | 16.8 | 63        |
| 38 | The second European interdisciplinary Ewing sarcoma research summit - A joint effort to deconstructing the multiple layers of a complex disease. Oncotarget, 2016, 7, 8613-8624.               | 1.8  | 55        |
| 39 | Inhibitors of Clycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects. ACS Chemical Biology, 2016, 11, 1952-1963.                                       | 3.4  | 55        |
| 40 | Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in <i>TP53</i> wild-type Ewing sarcoma. Journal of Experimental Medicine, 2018, 215, 2137-2155.                              | 8.5  | 55        |
| 41 | Targeting chromatin complexes in fusion protein-driven malignancies. Nature Reviews Cancer, 2019, 19, 255-269.                                                                                 | 28.4 | 55        |
| 42 | Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo. Blood, 2020, 135, 56-70.                                                                               | 1.4  | 49        |
| 43 | TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell, 2021, 39, 1262-1278.e7.                                                                             | 16.8 | 49        |
| 44 | New Approaches to Target T-ALL. Frontiers in Oncology, 2014, 4, 170.                                                                                                                           | 2.8  | 48        |
| 45 | TOX Regulates Growth, DNA Repair, and Genomic Instability in T-cell Acute Lymphoblastic Leukemia.<br>Cancer Discovery, 2017, 7, 1336-1353.                                                     | 9.4  | 48        |
| 46 | Phase I trial of the mTOR inhibitor everolimus in combination with multiâ€egent chemotherapy in relapsed childhood acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2018, 65, e27062. | 1.5  | 48        |
| 47 | TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Reports, 2018, 25, 1255-1267.e5.                                                                                 | 6.4  | 46        |
| 48 | Integrated genetic and pharmacologic interrogation of rare cancers. Nature Communications, 2016, 7, 11987.                                                                                     | 12.8 | 45        |
| 49 | Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. Bioorganic and Medicinal Chemistry, 2017, 25, 6479-6485.                 | 3.0  | 43        |
| 50 | MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Research, 2019, 79, 2404-2414.                                                                              | 0.9  | 43        |
| 51 | The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell, 2022, 40, 301-317.e12.                                                                                                      | 16.8 | 43        |
| 52 | Comparative proteomics reveals a diagnostic signature for pulmonary headâ€andâ€neck cancerÂmetastasis.<br>EMBO Molecular Medicine, 2018, 10, .                                                 | 6.9  | 41        |
| 53 | Ushering in the next generation of precision trials for pediatric cancer. Science, 2019, 363, 1175-1181.                                                                                       | 12.6 | 41        |
| 54 | EWS–FLI1 modulated alternative splicing of ARID1A reveals novel oncogenic function through the BAF complex. Nucleic Acids Research, 2019, 47, 9619-9636.                                       | 14.5 | 35        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Bepridil exhibits antiâ€leukemic activity associated with NOTCH1 pathway inhibition in chronic<br>lymphocytic leukemia. International Journal of Cancer, 2018, 143, 958-970.                                                      | 5.1  | 32        |
| 56 | Virtual Screening Identifies Irreversible FMS-like Tyrosine Kinase 3 Inhibitors with Activity toward Resistance-Conferring Mutations. Journal of Medicinal Chemistry, 2019, 62, 2428-2446.                                        | 6.4  | 32        |
| 57 | An <i>In Vivo</i> CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML. Cancer Discovery, 2022, 12, 432-449.                                                                                                     | 9.4  | 32        |
| 58 | Leukemia-specific delivery of mutant NOTCH1 targeted therapy. Journal of Experimental Medicine, 2018, 215, 197-216.                                                                                                               | 8.5  | 30        |
| 59 | Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Science Translational Medicine, 2021, 13, .                                                | 12.4 | 29        |
| 60 | Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers<br>Harboring Loss of Chromosome 18q or 16q. Cell Reports, 2020, 33, 108493.                                                             | 6.4  | 28        |
| 61 | <i>RAD21</i> is a driver of chromosome 8 gain in Ewing sarcoma to mitigate replication stress. Genes<br>and Development, 2021, 35, 556-572.                                                                                       | 5.9  | 28        |
| 62 | Resistance Mechanisms to SYK Inhibition in Acute Myeloid Leukemia. Cancer Discovery, 2020, 10, 214-231.                                                                                                                           | 9.4  | 27        |
| 63 | Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic<br>Leukemia. Cell Chemical Biology, 2020, 27, 678-697.e13.                                                                          | 5.2  | 27        |
| 64 | Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma. European Journal of Medicinal Chemistry, 2021, 221, 113481. | 5.5  | 27        |
| 65 | SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma. Blood, 2022, 139, 538-553.                                                                                                               | 1.4  | 27        |
| 66 | Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia.<br>Journal of Medicinal Chemistry, 2015, 58, 8907-8919.                                                                        | 6.4  | 25        |
| 67 | Biology and Therapy of Dominant Fusion Oncoproteins Involving Transcription Factor and Chromatin<br>Regulators in Sarcomas. Annual Review of Cancer Biology, 2019, 3, 299-321.                                                    | 4.5  | 25        |
| 68 | Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in<br>Pediatric Rhabdoid Tumors. Cell Reports, 2019, 28, 2331-2344.e8.                                                               | 6.4  | 24        |
| 69 | Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia, 2022, 36,<br>1585-1595.                                                                                                           | 7.2  | 24        |
| 70 | A phase II study of the EGFR inhibitor gefitinib in patients with acute myeloid leukemia. Leukemia<br>Research, 2014, 38, 430-434.                                                                                                | 0.8  | 23        |
| 71 | Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy.<br>Leukemia, 2022, 36, 348-360.                                                                                               | 7.2  | 23        |
| 72 | Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.                                                                    | 13.2 | 23        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Targeted therapy for fusion-driven high-risk acute leukemia. Blood, 2018, 132, 1241-1247.                                                                                                                  | 1.4  | 22        |
| 74 | Selective Modulation of a Pan-Essential Protein as a Therapeutic Strategy in Cancer. Cancer Discovery, 2021, 11, 2282-2299.                                                                                | 9.4  | 21        |
| 75 | Increased SYK activity is associated with unfavorable outcome among patients with acute myeloid leukemia. Oncotarget, 2015, 6, 25575-25587.                                                                | 1.8  | 20        |
| 76 | Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget, 2017, 8, 52026-52044. | 1.8  | 19        |
| 77 | Preclinical efficacy for a novel tyrosine kinase inhibitor, ArQule 531 against acute myeloid leukemia.<br>Journal of Hematology and Oncology, 2020, 13, 8.                                                 | 17.0 | 16        |
| 78 | Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A<br>Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.                            | 9.4  | 16        |
| 79 | IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. Nature Cancer, 2022, 3, 595-613.                                                      | 13.2 | 16        |
| 80 | Precision Targeting of BFL-1/A1 and an ATM Co-dependency in Human Cancer. Cell Reports, 2018, 24, 3393-3403.e5.                                                                                            | 6.4  | 15        |
| 81 | A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia.<br>Genes and Development, 2022, 36, 368-389.                                                                  | 5.9  | 14        |
| 82 | The Folate Cycle Enzyme MTHFR Is a Critical Regulator of Cell Response to MYC-Targeting Therapies.<br>Cancer Discovery, 2020, 10, 1894-1911.                                                               | 9.4  | 13        |
| 83 | Gene Fusions Create Partner and Collateral Dependencies Essential to Cancer Cell Survival. Cancer Research, 2021, 81, 3971-3984.                                                                           | 0.9  | 11        |
| 84 | Creatine kinase pathway inhibition alters GSK3 and WNT signaling in EVI1-positive AML. Leukemia, 2019, 33, 800-804.                                                                                        | 7.2  | 10        |
| 85 | Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI Insight, 2019, 4, .                                                                                     | 5.0  | 10        |
| 86 | Genomic approaches in acute leukemia. Best Practice and Research in Clinical Haematology, 2006, 19, 263-268.                                                                                               | 1.7  | 8         |
| 87 | The synergy of BET inhibitors with aurora A kinase inhibitors in MYCN-amplified neuroblastoma is heightened with functional TP53. Neoplasia, 2021, 23, 624-633.                                            | 5.3  | 8         |
| 88 | Transcriptional Plasticity Drives Leukemia Immune Escape. Blood Cancer Discovery, 2022, 3, 394-409.                                                                                                        | 5.0  | 8         |
| 89 | Single-cell cloning of human T-cell lines reveals clonal variation in cell death responses to chemotherapeutics. Cancer Genetics, 2019, 237, 69-77.                                                        | 0.4  | 6         |
| 90 | Targeting DUBs to degrade oncogenic proteins. British Journal of Cancer, 2020, 122, 1121-1123.                                                                                                             | 6.4  | 6         |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | KLF5 controls glutathione metabolism to suppress p190-BCR-ABL+ B-cell lymphoblastic leukemia.<br>Oncotarget, 2018, 9, 29665-29679.                                                             | 1.8  | 6         |
| 92  | Identification of an Epi-metabolic dependency on EHMT2/G9a in T-cell acute lymphoblastic leukemia.<br>Cell Death and Disease, 2022, 13, .                                                      | 6.3  | 6         |
| 93  | Targeting EZH2 for the treatment of hepatosplenic T-cell lymphoma. Blood Advances, 2020, 4, 1265-1269.                                                                                         | 5.2  | 5         |
| 94  | Scratching the Surface of Immunotherapeutic Targets in Neuroblastoma. Cancer Cell, 2017, 32, 271-273.                                                                                          | 16.8 | 3         |
| 95  | Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory or High-Risk Leukemias: A<br>Report from the LEAP Consortium. Blood, 2018, 132, 261-261.                             | 1.4  | 3         |
| 96  | The Folate Cycle Enzyme MTHFR Is a Critical Regulator of Cell Response to MYC-Targeting Therapies.<br>Blood, 2019, 134, 877-877.                                                               | 1.4  | 1         |
| 97  | Modulating AML1-ETO with Signature-Based Small Molecule Library Screening Blood, 2006, 108, 729-729.                                                                                           | 1.4  | 1         |
| 98  | Targeting Folate Metabolism In Acute Myelogenous Leukemia. Blood, 2013, 122, 3798-3798.                                                                                                        | 1.4  | 1         |
| 99  | Targeting Csnk1a1 in leukemia. Journal of Experimental Medicine, 2014, 211, 594-594.                                                                                                           | 8.5  | 0         |
| 100 | Chemical Genomic Screen Identifies Ionophores as Modulators of Notch1 in T-ALL. Blood, 2008, 112, 200-200.                                                                                     | 1.4  | 0         |
| 101 | Intersecting Chemical Genomic and Genetic Screens Identifies Glycogen Synthase Kinase-3α (GSK-3α) as a<br>Modulator of Differentiation In Acute Myeloid Leukemia. Blood, 2010, 116, 1000-1000. | 1.4  | 0         |
| 102 | Intersecting High-Throughput Screens Identifies SERCA As a Target for Modulating NOTCH1 In<br>Hematopoietic Malignancies. Blood, 2011, 118, 555-555.                                           | 1.4  | 0         |
| 103 | In Vivo RNA Interference Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3<br>Signaling. Blood, 2011, 118, 758-758.                                                       | 1.4  | 0         |
| 104 | Aberrant Activation of the PI3K/mTOR Pathway Promotes Resistance to Sorafenib in AML. Blood, 2015, 126, 2472-2472.                                                                             | 1.4  | 0         |
| 105 | Leukemia-Specific Delivery of Mutant NOTCH1 Targeted Therapy. Blood, 2016, 128, 889-889.                                                                                                       | 1.4  | 0         |
| 106 | Transcriptional Immunoediting of AML Cells after Allogeneic Hematopoietic Stem Cell<br>Transplantation. Blood, 2021, 138, 647-647.                                                             | 1.4  | 0         |
| 107 | Alisertib Synergistically Strengthens the Anti-Leukemia Activity of Venetoclax in <i>TCF3-Hlf</i> B-ALL.<br>Blood, 2021, 138, 705-705.                                                         | 1.4  | 0         |
| 108 | Abstract 3889: Identification of ADRN-specific, MES-specific, and pan-subtype therapeutic targets in neuroblastoma. Cancer Research, 2022, 82, 3889-3889.                                      | 0.9  | 0         |