Yadong Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7285121/publications.pdf Version: 2024-02-01

Υλρονς Υιν

#	Article	IF	CITATIONS
1	One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 2003, 15, 353-389.	11.1	8,229
2	Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 2004, 304, 711-714.	6.0	3,255
3	Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature, 2005, 437, 664-670.	13.7	2,996
4	Monodispersed Colloidal Spheres: Old Materials with New Applications. Advanced Materials, 2000, 12, 693-713.	11.1	1,940
5	Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials, 2002, 14, 4736-4745.	3.2	1,421
6	Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chemical Reviews, 2016, 116, 10983-11060.	23.0	1,215
7	Cation Exchange Reactions in Ionic Nanocrystals. Science, 2004, 306, 1009-1012.	6.0	1,135
8	Responsive Photonic Crystals. Angewandte Chemie - International Edition, 2011, 50, 1492-1522.	7.2	1,006
9	Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Solâ^Gel Approach. Nano Letters, 2002, 2, 183-186.	4.5	1,000
10	Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angewandte Chemie - International Edition, 2007, 46, 4342-4345.	7.2	914
11	Template-Assisted Self-Assembly:  A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. Journal of the American Chemical Society, 2001, 123, 8718-8729.	6.6	853
12	Templated synthesis of nanostructured materials. Chemical Society Reviews, 2013, 42, 2610-2653.	18.7	806
13	Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads. Advanced Materials, 2000, 12, 206-209.	11.1	790
14	A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a "Magic―Reagent?. Journal of the American Chemical Society, 2011, 133, 18931-18939.	6.6	687
15	Metal Sulfides as Excellent Co-catalysts for H2O2 Decomposition in Advanced Oxidation Processes. CheM, 2018, 4, 1359-1372.	5.8	679
16	Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. Journal of the American Chemical Society, 2005, 127, 17118-17127.	6.6	629
17	Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nature Photonics, 2009, 3, 534-540.	15.6	617
18	Composite Titanium Dioxide Nanomaterials. Chemical Reviews, 2014, 114, 9853-9889.	23.0	580

#	Article	IF	CITATIONS
19	Permeable Silica Shell through Surface-Protected Etching. Nano Letters, 2008, 8, 2867-2871.	4.5	561
20	Synthesis and Self-Assembly of Au@SiO2 Coreâ^'Shell Colloids. Nano Letters, 2002, 2, 785-788.	4.5	548
21	Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chemistry of Materials, 2013, 25, 1179-1189.	3.2	534
22	Highly Tunable Superparamagnetic Colloidal Photonic Crystals. Angewandte Chemie - International Edition, 2007, 46, 7428-7431.	7.2	511
23	Core–Shell Nanostructured Catalysts. Accounts of Chemical Research, 2013, 46, 1816-1824.	7.6	501
24	Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates. Advanced Materials, 2006, 18, 1745-1749.	11.1	480
25	CoPâ€Doped MOFâ€Based Electrocatalyst for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 4679-4684.	7.2	480
26	Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens processElectronic supplementary information (ESI) available: photographs of silver mirror, and of stable dispersions of silver nanoparticles from mixing diluted silvering solutions under sonication at various times. See http://www.rsc.org/suppdata/jm/b1/b107469e/. Journal of Materials	6.7	445
27	Chemistry, 2002, 12, 522-527. Core–Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell: Controllable Reactivity, High Stability, and Magnetic Recyclability. Angewandte Chemie - International Edition, 2008, 47, 8924-8928.	7.2	444
28	Self-templated synthesis of hollow nanostructures. Nano Today, 2009, 4, 494-507.	6.2	439
29	Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size. Journal of the American Chemical Society, 2005, 127, 7332-7333.	6.6	428
30	Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction. Nano Energy, 2018, 43, 110-116.	8.2	428
31	Encapsulated Metal Nanoparticles for Catalysis. Chemical Reviews, 2021, 121, 834-881.	23.0	426
32	Mesoporous Anatase Titania Hollow Nanostructures though Silicaâ€Protected Calcination. Advanced Functional Materials, 2012, 22, 166-174.	7.8	404
33	Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures. Advanced Functional Materials, 2003, 13, 907-918.	7.8	403
34	Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process. Nano Letters, 2005, 5, 1237-1242.	4.5	399
35	Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Letters, 2016, 16, 3675-3681.	4.5	388
36	Nobleâ€Metalâ€Free Electrocatalysts for Oxygen Evolution. Small, 2019, 15, e1804201.	5.2	388

#	Article	IF	CITATIONS
37	Grapheneâ€Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie - International Edition, 2014, 53, 250-254.	7.2	384
38	Colloidal nanoparticle clusters: functional materials by design. Chemical Society Reviews, 2012, 41, 6874.	18.7	375
39	From Nonluminescent Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX ₃ Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism. Nano Letters, 2017, 17, 5799-5804.	4.5	367
40	Right Bipyramids of Silver:  A New Shape Derived from Single Twinned Seeds. Nano Letters, 2006, 6, 765-768.	4.5	365
41	Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica. Nano Letters, 2002, 2, 427-430.	4.5	351
42	Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals. Advanced Functional Materials, 2006, 16, 1389-1399.	7.8	351
43	A General Approach for Transferring Hydrophobic Nanocrystals into Water. Nano Letters, 2007, 7, 3203-3207.	4.5	348
44	Interfacial Synthesis of Highly Stable CsPbX ₃ /Oxide Janus Nanoparticles. Journal of the American Chemical Society, 2018, 140, 406-412.	6.6	348
45	A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10â^'30 nm. Journal of the American Chemical Society, 2000, 122, 12582-12583.	6.6	338
46	Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures. Accounts of Chemical Research, 2012, 45, 1431-1440.	7.6	327
47	Upconversion luminescence with tunable lifetime in NaYF ₄ :Yb,Er nanocrystals: role of nanocrystal size. Nanoscale, 2013, 5, 944-952.	2.8	327
48	Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angewandte Chemie - International Edition, 2012, 51, 5629-5633.	7.2	313
49	Selfâ€Assembled Au/CdSe Nanocrystal Clusters for Plasmonâ€Mediated Photocatalytic Hydrogen Evolution. Advanced Materials, 2017, 29, 1700803.	11.1	311
50	Magnetically Recoverable Core–Shell Nanocomposites with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2010, 16, 6243-6250.	1.7	310
51	Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie - International Edition, 2005, 44, 7913-7917.	7.2	305
52	Formation of Hollow Silica Colloids through a Spontaneous Dissolution–Regrowth Process. Angewandte Chemie - International Edition, 2008, 47, 5806-5811.	7.2	305
53	A Yolk@Shell Nanoarchitecture for Au/TiO ₂ Catalysts. Angewandte Chemie - International Edition, 2011, 50, 10208-10211.	7.2	299
54	Vacancy Coalescence during Oxidation of Iron Nanoparticles. Journal of the American Chemical Society, 2007, 129, 10358-10360.	6.6	298

#	Article	IF	CITATIONS
55	All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges. ACS Central Science, 2018, 4, 668-679.	5.3	298
56	Magnetically Tunable Colloidal Photonic Structures in Alkanol Solutions. Advanced Materials, 2008, 20, 3485-3491.	11.1	292
57	A Highly Active Titanium Dioxide Based Visibleâ€Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration. Angewandte Chemie - International Edition, 2011, 50, 7088-7092.	7.2	290
58	Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nature Communications, 2010, 1, 24.	5.8	280
59	Control of the nanoscale crystallinity in mesoporous TiO ₂ shells for enhanced photocatalytic activity. Energy and Environmental Science, 2012, 5, 6321-6327.	15.6	272
60	Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. Journal of the American Chemical Society, 2014, 136, 7474-7479.	6.6	272
61	V2O5Nanorods on TiO2Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination. Nano Letters, 2006, 6, 1297-1302.	4.5	269
62	A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotechnology, 2006, 1, 47-52.	15.6	266
63	Ligand-Exchange Assisted Formation of Au/TiO ₂ Schottky Contact for Visible-Light Photocatalysis. Nano Letters, 2014, 14, 6731-6736.	4.5	265
64	Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se. Journal of the American Chemical Society, 2001, 123, 11500-11501.	6.6	259
65	Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions. Angewandte Chemie - International Edition, 2007, 46, 790-794.	7.2	254
66	Hierarchical Magnetite/Silica Nanoassemblies as Magnetically Recoverable Catalyst–Supports. Nano Letters, 2008, 8, 931-934.	4.5	249
67	Magnetochromatic Microspheres: Rotating Photonic Crystals. Journal of the American Chemical Society, 2009, 131, 15687-15694.	6.6	246
68	Faceting of Nanocrystals during Chemical Transformation:Â From Solid Silver Spheres to Hollow Gold Octahedra. Journal of the American Chemical Society, 2006, 128, 12671-12673.	6.6	245
69	A Self-Templated Route to Hollow Silica Microspheres. Journal of Physical Chemistry C, 2009, 113, 3168-3175.	1.5	243
70	Seeded Growth of Uniform Ag Nanoplates with High Aspect Ratio and Widely Tunable Surface Plasmon Bands. Nano Letters, 2010, 10, 5037-5042.	4.5	242
71	Reconstruction of Silver Nanoplates by UV Irradiation: Tailored Optical Properties and Enhanced Stability. Angewandte Chemie - International Edition, 2009, 48, 3516-3519.	7.2	241
72	Rewritable Photonic Paper with Hygroscopic Salt Solution as Ink. Advanced Materials, 2009, 21, 4259-4264.	11.1	232

#	Article	IF	CITATIONS
73	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews, 2021, 50, 5898-5951.	18.7	232
74	Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature, 2021, 598, 76-81.	13.7	229
75	Explaining the Size Dependence in Platinumâ€Nanoparticleâ€Catalyzed Hydrogenation Reactions. Angewandte Chemie - International Edition, 2016, 55, 15656-15661.	7.2	225
76	Superparamagnetic Composite Colloids with Anisotropic Structures. Journal of the American Chemical Society, 2007, 129, 8974-8975.	6.6	224
77	Selfâ€Templated Fabrication of CoO–MoO ₂ Nanocages for Enhanced Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1702324.	7.8	224
78	Surfaceâ€Protected Etching of Mesoporous Oxide Shells for the Stabilization of Metal Nanocatalysts. Advanced Functional Materials, 2010, 20, 2201-2214.	7.8	220
79	One-Step Synthesis of Highly Water-Soluble Magnetite Colloidal Nanocrystals. Chemistry - A European Journal, 2007, 13, 7153-7161.	1.7	219
80	Self-Assembly of Monodispersed Spherical Colloids into Complex Aggregates with Well-Defined Sizes, Shapes, and Structures. Advanced Materials, 2001, 13, 267-271.	11.1	217
81	Controllable Synthesis of Mesoporous TiO ₂ Hollow Shells: Toward an Efficient Photocatalyst. Advanced Functional Materials, 2013, 23, 4246-4254.	7.8	216
82	Fabrication and Characterization of Porous Membranes with Highly Ordered Three-Dimensional Periodic Structures. Chemistry of Materials, 1999, 11, 2827-2836.	3.2	210
83	Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO ₂ Electrochemical Reduction. ACS Nano, 2016, 10, 4559-4564.	7.3	207
84	Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy and Environmental Science, 2013, 6, 2082.	15.6	203
85	Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17, 2600.	6.7	201
86	Three-Dimensional Photonic Crystals with Non-spherical Colloids as Building Blocks. Advanced Materials, 2001, 13, 415-420.	11.1	200
87	A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Colloids. Journal of the American Chemical Society, 2001, 123, 771-772.	6.6	192
88	Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 6365.	6.7	192
89	Magnetic field guided colloidal assembly. Materials Today, 2013, 16, 110-116.	8.3	192
90	Templated Synthesis of Metal Nanorods in Silica Nanotubes. Journal of the American Chemical Society, 2011, 133, 19706-19709.	6.6	191

#	Article	IF	CITATIONS
91	Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nature Communications, 2014, 5, 5459.	5.8	183
92	Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation. Nano Letters, 2019, 19, 400-407.	4.5	181
93	Stimuliâ€Responsive Optical Nanomaterials. Advanced Materials, 2019, 31, e1807061.	11.1	178
94	Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces. Chemistry of Materials, 2001, 13, 1146-1148.	3.2	173
95	Photocatalytic Synthesis and Photovoltaic Application of Ag-TiO ₂ Nanorod Composites. Nano Letters, 2013, 13, 5698-5702.	4.5	173
96	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	23.0	173
97	Assembly of Magnetically Tunable Photonic Crystals in Nonpolar Solvents. Journal of the American Chemical Society, 2009, 131, 3484-3486.	6.6	172
98	Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Research, 2009, 2, 583-591.	5.8	170
99	Modulation of the Reduction Potential of TiO _{2–<i>x</i>} by Fluorination for Efficient and Selective CH ₄ Generation from CO ₂ Photoreduction. Nano Letters, 2018, 18, 3384-3390.	4.5	166
100	The chemistry of functional nanomaterials. Chemical Society Reviews, 2013, 42, 2484.	18.7	164
101	Synthesis and Characterization of MgO Nanowires Through a Vapor-Phase Precursor Method. Advanced Functional Materials, 2002, 12, 293.	7.8	160
102	Magnetically assembled photonic crystal film for humidity sensing. Journal of Materials Chemistry, 2011, 21, 3672.	6.7	157
103	Selfâ€Templating Approaches to Hollow Nanostructures. Advanced Materials, 2019, 31, e1802349.	11.1	156
104	TiO ₂ /NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. Journal of Materials Chemistry A, 2015, 3, 20727-20735.	5.2	154
105	Thermoresponsive Assembly of Charged Gold Nanoparticles and Their Reversible Tuning of Plasmon Coupling. Angewandte Chemie - International Edition, 2012, 51, 6373-6377.	7.2	151
106	Crystallinity control of TiO ₂ hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy and Environmental Science, 2015, 8, 286-296.	15.6	150
107	Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination. ACS Nano, 2020, 14, 17419-17427.	7.3	150
108	Magnetically Responsive Photonic Nanochains. Angewandte Chemie - International Edition, 2011, 50, 3747-3750.	7.2	145

#	Article	IF	CITATIONS
109	Synthesis and Electrical Characterization of Silver Nanobeams. Nano Letters, 2006, 6, 2273-2278.	4.5	144
110	Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today, 2020, 32, 100855.	6.2	143
111	Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chemical Communications, 2013, 49, 5135.	2.2	139
112	Colorimetric Stress Memory Sensor Based on Disassembly of Gold Nanoparticle Chains. Nano Letters, 2014, 14, 2466-2470.	4.5	139
113	Self-Assembly of Spherical Colloids into Helical Chains with Well-Controlled Handedness. Journal of the American Chemical Society, 2003, 125, 2048-2049.	6.6	138
114	Magnetically Responsive Nanostructures with Tunable Optical Properties. Journal of the American Chemical Society, 2016, 138, 6315-6323.	6.6	137
115	Synthesis, Stability, and Surface Plasmonic Properties of Rhodium Multipods, and Their Use as Substrates for Surface-Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2006, 45, 1288-1292.	7.2	135
116	A Self-Templated Approach to TiO2 Microcapsules. Nano Letters, 2007, 7, 1832-1836.	4.5	135
117	Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Research, 2011, 4, 103-114.	5.8	135
118	Magnetic Assembly and Fieldâ€īuning of Ellipsoidalâ€Nanoparticleâ€Based Colloidal Photonic Crystals. Angewandte Chemie - International Edition, 2015, 54, 7077-7081.	7.2	135
119	Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nature Communications, 2017, 8, 1261.	5.8	135
120	Selfâ€Assembled TiO ₂ Nanocrystal Clusters for Selective Enrichment of Intact Phosphorylated Proteins. Angewandte Chemie - International Edition, 2010, 49, 1862-1866.	7.2	134
121	Self-Assembly and Field-Responsive Optical Diffractions of Superparamagnetic Colloids. Langmuir, 2008, 24, 3671-3680.	1.6	133
122	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie - International Edition, 2018, 57, 11678-11682.	7.2	133
123	Tailored Synthesis of Superparamagnetic Gold Nanoshells with Tunable Optical Properties. Advanced Materials, 2010, 22, 1905-1909.	11.1	128
124	Magnetically Actuated Liquid Crystals. Nano Letters, 2014, 14, 3966-3971.	4.5	125
125	Preparation and Characterization of Micrometer-Sized "Egg Shells― Advanced Materials, 2001, 13, 271-274.	11.1	123
126	Magnetically responsive colloidal photonic crystals. Journal of Materials Chemistry, 2008, 18, 5041.	6.7	122

#	Article	IF	CITATIONS
127	Integrated Evaporator for Efficient Solar-Driven Interfacial Steam Generation. Nano Letters, 2020, 20, 6051-6058.	4.5	121
128	Porous TiO ₂ /C Nanocomposite Shells As a High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 6478-6483.	4.0	119
129	Control over the permeation of silica nanoshells by surface-protected etching with water. Physical Chemistry Chemical Physics, 2010, 12, 11836.	1.3	116
130	Carbon-Incorporated NiO/TiO ₂ Mesoporous Shells with p–n Heterojunctions for Efficient Visible Light Photocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 29511-29521.	4.0	116
131	Mesoporous TiO ₂ Nanocrystal Clusters for Selective Enrichment of Phosphopeptides. Analytical Chemistry, 2010, 82, 7249-7258.	3.2	114
132	Photocatalytic Selfâ€Doped SnO _{2â^'<i>x</i>} Nanocrystals Drive Visible‣ightâ€Responsive Color Switching. Angewandte Chemie - International Edition, 2017, 56, 7792-7796.	7.2	114
133	Large-Scale Synthesis of Monodisperse Nanorods of Se/Te Alloys Through a Homogeneous Nucleation and Solution Growth Process. Advanced Materials, 2001, 13, 1380-1384.	11.1	113
134	Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates. Advanced Materials, 2002, 14, 605.	11.1	113
135	Sulfidation of Cadmium at the Nanoscale. ACS Nano, 2008, 2, 1452-1458.	7.3	113
136	Unconventional Route to Encapsulated Ultrasmall Gold Nanoparticles for High-Temperature Catalysis. ACS Nano, 2014, 8, 7297-7304.	7.3	113
137	One-step seeded growth of Au nanoparticles with widely tunable sizes. Nanoscale, 2012, 4, 2875.	2.8	110
138	Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chemical Physics Letters, 2007, 440, 273-278.	1.2	109
139	New nanostructured heterogeneous catalysts with increased selectivity and stability. Physical Chemistry Chemical Physics, 2011, 13, 2449-2456.	1.3	109
140	Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7942-7947.	3.3	109
141	Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Research, 2011, 4, 115-123.	5.8	107
142	Role of Salt in the Spontaneous Assembly of Charged Gold Nanoparticles in Ethanol. Langmuir, 2011, 27, 5282-5289.	1.6	106
143	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie - International Edition, 2016, 55, 2167-2170.	7.2	105
144	Direct Assembly of Hydrophobic Nanoparticles to Multifunctional Structures. Nano Letters, 2011, 11, 3404-3412.	4.5	104

#	Article	IF	CITATIONS
145	CoPâ€Doped MOFâ€Based Electrocatalyst for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 4727-4732.	1.6	102
146	Magnetic Assembly of Nonmagnetic Particles into Photonic Crystal Structures. Nano Letters, 2010, 10, 4708-4714.	4.5	100
147	Nitridation and Layered Assembly of Hollow TiO ₂ Shells for Electrochemical Energy Storage. Advanced Functional Materials, 2014, 24, 848-856.	7.8	100
148	Three-Dimensional Dendritic Cu–Co–P Electrode by One-Step Electrodeposition on a Hydrogen Bubble Template for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 10734-10741.	3.2	100
149	Bi(OH) ₃ /PdBi Composite Nanochains as Highly Active and Durable Electrocatalysts for Ethanol Oxidation. Nano Letters, 2019, 19, 4752-4759.	4.5	99
150	Magnetic Tuning of Plasmonic Excitation of Gold Nanorods. Journal of the American Chemical Society, 2013, 135, 15302-15305.	6.6	98
151	Surface patterning and its application in wetting/dewetting studies. Current Opinion in Colloid and Interface Science, 2001, 6, 54-64.	3.4	97
152	Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Research, 2017, 108, 383-390.	5.3	97
153	Etchingâ€Free Epitaxial Growth of Gold on Silver Nanostructures for High Chemical Stability and Plasmonic Activity. Advanced Functional Materials, 2015, 25, 5435-5443.	7.8	96
154	Growth of Large Crystals of Monodispersed Spherical Colloids in Fluidic Cells Fabricated Using Non-photolithographic Methods. Langmuir, 2001, 17, 6344-6350.	1.6	95
155	Plasmonic Nanostructures for Photothermal Conversion. Small Science, 2021, 1, 2000055.	5.8	93
156	Au/AgI Dimeric Nanoparticles for Highly Selective and Sensitive Colorimetric Detection of Hydrogen Sulfide. Advanced Functional Materials, 2018, 28, 1800515.	7.8	92
157	One-Pot Synthesis and Optical Property of Copper(I) Sulfide Nanodisks. Inorganic Chemistry, 2010, 49, 6601-6608.	1.9	91
158	Gram-Scale Synthesis of Silica Nanotubes with Controlled Aspect Ratios by Templating of Nickel-Hydrazine Complex Nanorods. Langmuir, 2011, 27, 12201-12208.	1.6	90
159	Nanocrystalline TiO ₂ -Catalyzed Photoreversible Color Switching. Nano Letters, 2014, 14, 1681-1686.	4.5	90
160	Colloidal Crystals Made of Polystyrene Spheroids:Â Fabrication and Structural/Optical Characterization. Langmuir, 2002, 18, 7722-7727.	1.6	89
161	Smart Materials by Nanoscale Magnetic Assembly. Advanced Functional Materials, 2020, 30, 1903467.	7.8	88
162	Epitaxial Growth of Shape-Controlled Bi ₂ Te ₃ â^'Te Heterogeneous Nanostructures. Journal of the American Chemical Society, 2010, 132, 17316-17324.	6.6	87

#	Article	IF	CITATIONS
163	Magnetically induced colloidal assembly into field-responsive photonic structures. Nanoscale, 2011, 3, 177-183.	2.8	87
164	Template-Directed Growth of (100)-Oriented Colloidal Crystals. Langmuir, 2003, 19, 622-631.	1.6	86
165	Lattice-Mismatch-Induced Twinning for Seeded Growth of Anisotropic Nanostructures. ACS Nano, 2015, 9, 3307-3313.	7.3	86
166	Metallic Active Sites on MoO2(110) Surface to Catalyze Advanced Oxidation Processes for Efficient Pollutant Removal. IScience, 2020, 23, 100861.	1.9	86
167	Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity. Chemical Science, 2018, 9, 398-404.	3.7	85
168	Nanostructured Hybrid Shells of r-GO/AuNP/ <i>m</i> -TiO ₂ as Highly Active Photocatalysts. ACS Applied Materials & Interfaces, 2015, 7, 6909-6918.	4.0	84
169	Electronic Structure of Cobalt Nanocrystals Suspended in Liquid. Nano Letters, 2007, 7, 1919-1922.	4.5	83
170	Photocatalytic Color Switching of Transition Metal Hexacyanometalate Nanoparticles for High-Performance Light-Printable Rewritable Paper. Nano Letters, 2017, 17, 755-761.	4.5	83
171	Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Science Robotics, 2021, 6, eabi4523.	9.9	81
172	Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. Applied Catalysis B: Environmental, 2020, 278, 119276.	10.8	80
173	Cd ²⁺ -Doped Amorphous TiO ₂ Hollow Spheres for Robust and Ultrasensitive Photoelectrochemical Sensing of Hydrogen Sulfide. Analytical Chemistry, 2018, 90, 5496-5502.	3.2	79
174	Detection of MicroRNA by Fluorescence Amplification Based on Cation-Exchange in Nanocrystals. Analytical Chemistry, 2009, 81, 9723-9729.	3.2	78
175	Magnetic Assembly of Nanocubes for Orientation-Dependent Photonic Responses. Nano Letters, 2019, 19, 6673-6680.	4.5	78
176	Thermodynamic controlled synthesis of intermetallic Au ₃ Cu alloy nanocrystals from Cu microparticles. Journal of Materials Chemistry A, 2014, 2, 902-906.	5.2	77
177	Gold Nanoframes by Nonepitaxial Growth of Au on Agl Nanocrystals for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2015, 15, 4448-4454.	4.5	77
178	Seed-Mediated Growth of Anatase TiO ₂ Nanocrystals with Core–Antenna Structures for Enhanced Photocatalytic Activity. Journal of the American Chemical Society, 2015, 137, 11327-11339.	6.6	77
179	Shearâ€Induced Assembly of Liquid Colloidal Crystals for Largeâ€6cale Structural Coloration of Textiles. Advanced Functional Materials, 2021, 31, 2010746.	7.8	77
180	Embedding RhP <i>_x</i> in N, P Coâ€Doped Carbon Nanoshells Through Synergetic Phosphorization and Pyrolysis for Efficient Hydrogen Evolution. Advanced Functional Materials, 2019, 29, 1901790.	7.8	76

#	Article	IF	CITATIONS
181	Pt Nanoparticles Surfactant-Directed Assembled into Colloidal Spheres and used as Substrates in Forming Pt Nanorods and Nanowires. Small, 2006, 2, 1340-1343.	5.2	74
182	Silica Microspheres with Fibrous Shells: Synthesis and Application in HPLC. Analytical Chemistry, 2015, 87, 9631-9638.	3.2	74
183	Superior performance and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 4290-4299.	5.2	73
184	Pd-Catalyzed Growth of Pt Nanoparticles or Nanowires as Dense Coatings on Polymeric and Ceramic Particulate Supports. Advanced Materials, 2006, 18, 3271-3274.	11.1	72
185	IR Spectroscopic Observation of Molecular Transport through Pt@CoO Yolkâ^'Shell Nanostructures. Journal of the American Chemical Society, 2007, 129, 9510-9513.	6.6	72
186	Seeded growth route to noble metal nanostructures. Journal of Materials Chemistry C, 2013, 1, 3898.	2.7	72
187	Niâ€based Plasmonic/Magnetic Nanostructures as Efficient Light Absorbers for Steam Generation. Advanced Functional Materials, 2021, 31, 2006294.	7.8	72
188	Synthesis of Pd Nanoframes by Excavating Solid Nanocrystals for Enhanced Catalytic Properties. ACS Nano, 2017, 11, 163-170.	7.3	71
189	Enhanced Photoreversible Color Switching of Redox Dyes Catalyzed by Bariumâ€Doped TiO ₂ Nanocrystals. Angewandte Chemie - International Edition, 2015, 54, 1321-1326.	7.2	70
190	Phase-controllable synthesis of cobalt hydroxide for electrocatalytic oxygen evolution. Dalton Transactions, 2017, 46, 10545-10548.	1.6	70
191	Colloidal Assembly Approaches to Micro/Nanostructures of Complex Morphologies. Small, 2018, 14, e1801083.	5.2	70
192	Large-scale synthesis of single-crystal CdSe nanowires through a cation-exchange route. Chemical Physics Letters, 2005, 416, 246-250.	1.2	69
193	Diffusion through the Shells of Yolk–Shell and Core–Shell Nanostructures in the Liquid Phase. Angewandte Chemie - International Edition, 2012, 51, 8034-8036.	7.2	69
194	Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chemical Science, 2015, 6, 5197-5203.	3.7	69
195	Decoration of size-tunable CuO nanodots on TiO ₂ nanocrystals for noble metal-free photocatalytic H ₂ production. Nanoscale, 2014, 6, 12002-12008.	2.8	68
196	Shape- and Size-Controlled Synthesis of Calcium Molybdate Doughnut-Shaped Microstructures. Journal of Physical Chemistry C, 2009, 113, 16414-16423.	1.5	66
197	Direct Synthesis of Water-Dispersible Magnetic/Plasmonic Heteronanostructures for Multimodality Biomedical Imaging. Nano Letters, 2019, 19, 3011-3018.	4.5	66
198	MoS ₂ /FeS Nanocomposite Catalyst for Efficient Fenton Reaction. ACS Applied Materials & Interfaces, 2021, 13, 51829-51838.	4.0	66

#	Article	IF	CITATIONS
199	Synthesis of cadmium sulfide nanoparticles in situ using γ-radiation. Chemical Communications, 1998, , 1641-1642.	2.2	65
200	Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO ₂ core–shell nanostructures. Physical Chemistry Chemical Physics, 2013, 15, 1488-1496.	1.3	65
201	Alkyne–DNA-Functionalized Alloyed Au/Ag Nanospheres for Ratiometric Surface-Enhanced Raman Scattering Imaging Assay of Endonuclease Activity in Live Cells. Analytical Chemistry, 2018, 90, 3898-3905.	3.2	65
202	Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy. ACS Nano, 2022, 16, 910-920.	7.3	65
203	Monitoring the Shape Evolution of Silver Nanoplates: A Marker Study. Angewandte Chemie - International Edition, 2012, 51, 552-555.	7.2	63
204	One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale, 2014, 6, 4513.	2.8	63
205	Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property. Nano Letters, 2016, 16, 5669-5674.	4.5	61
206	Island Growth in the Seed-Mediated Overgrowth of Monometallic Colloidal Nanostructures. CheM, 2017, 3, 678-690.	5.8	61
207	Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Research, 2018, 11, 780-790.	5.8	61
208	Spaceâ€Confined Seeded Growth of Cu Nanorods with Strong Surface Plasmon Resonance for Photothermal Actuation. Angewandte Chemie - International Edition, 2019, 58, 9275-9281.	7.2	61
209	Fluorescence Signal Amplification by Cation Exchange in Ionic Nanocrystals. Angewandte Chemie - International Edition, 2009, 48, 1588-1591.	7.2	60
210	Thermal Synthesis of Silver Nanoplates Revisited: A Modified Photochemical Process. ACS Nano, 2014, 8, 10252-10261.	7.3	60
211	Assembly of monodispersed spherical colloids into one-dimensional aggregates characterized by well-controlled structures and lengths. Journal of Materials Chemistry, 2001, 11, 987-989.	6.7	59
212	H ₂ O ₂ â€Aided Seedâ€Mediated Synthesis of Silver Nanoplates with Improved Yield and Efficiency. ChemPhysChem, 2012, 13, 2526-2530.	1.0	59
213	Interfacial solar heating by self-assembled Fe ₃ O ₄ @C film for steam generation. Materials Chemistry Frontiers, 2017, 1, 2620-2626.	3.2	59
214	Magnetically rewritable photonic ink based on superparamagnetic nanochains. Journal of Materials Chemistry C, 2013, 1, 6151.	2.7	58
215	A Sulfated ZrO ₂ Hollow Nanostructure as an Acid Catalyst in the Dehydration of Fructose to 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 2001-2008.	3.6	58
216	Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 21994-22001.	1.5	57

#	Article	IF	CITATIONS
217	Reversible Assembly and Dynamic Plasmonic Tuning of Ag Nanoparticles Enabled by Limited Ligand Protection. Nano Letters, 2018, 18, 5312-5318.	4.5	57
218	Coupling magnetic and plasmonic anisotropy in hybrid nanorods for mechanochromic responses. Nature Communications, 2020, 11, 2883.	5.8	57
219	Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability. Nanoscale, 2017, 9, 14875-14880.	2.8	56
220	Dynamic Colorâ€ S witching of Plasmonic Nanoparticle Films. Angewandte Chemie - International Edition, 2019, 58, 16307-16313.	7.2	56
221	Self-assembly of superparamagnetic magnetite particles into peapod-like structures and their application in optical modulation. Journal of Materials Chemistry, 2010, 20, 7965.	6.7	55
222	Synthesis and thermochromic properties of vanadium dioxide colloidal particles. Journal of Materials Chemistry, 2011, 21, 14776.	6.7	55
223	Realâ€ T ime Optofluidic Synthesis of Magnetochromatic Microspheres for Reversible Structural Color Patterning. Small, 2011, 7, 1163-1168.	5.2	54
224	Surface Engineering of Nanostructured Energy Materials. Advanced Materials, 2018, 30, e1802091.	11.1	54
225	Localized Charge Accumulation Driven by Li ⁺ Incorporation for Efficient LED Phosphors with Tunable Photoluminescence. Chemistry of Materials, 2020, 32, 9551-9559.	3.2	54
226	Controllable Fabrication of Au Nanocups by Confined‣pace Thermal Dewetting for OCT Imaging. Advanced Materials, 2017, 29, 1701070.	11.1	53
227	Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. ACS Nano, 2021, 15, 7348-7356.	7.3	53
228	Self-assembly and magnetically induced phase transition of three-dimensional colloidal photonic crystals. Nanoscale, 2012, 4, 4438.	2.8	52
229	Photonic Labyrinths: Two-Dimensional Dynamic Magnetic Assembly and <i>in Situ</i> Solidification. Nano Letters, 2013, 13, 1770-1775.	4.5	52
230	Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale, 2016, 8, 15689-15695.	2.8	52
231	Chemical Transformation of Colloidal Nanostructures with Morphological Preservation by Surface-Protection with Capping Ligands. Nano Letters, 2017, 17, 2713-2718.	4.5	52
232	Synthesis of tailored Au@TiO2 core–shell nanoparticles for photocatalytic reforming of ethanol. Catalysis Today, 2014, 225, 90-95.	2.2	51
233	Dynamic Colorâ€&witching of Plasmonic Nanoparticle Films. Angewandte Chemie, 2019, 131, 16453-16459.	1.6	51
234	Ultrafine platinum/iron oxide nanoconjugates confined in silica nanoshells for highly durable catalytic oxidation. Journal of Materials Chemistry A, 2016, 4, 1366-1372.	5.2	51

#	Article	IF	CITATIONS
235	Porous tubular carbon nanorods with excellent electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 12198.	5.2	50
236	Strain-Modulated Seeded Growth of Highly Branched Black Au Superparticles for Efficient Photothermal Conversion. Journal of the American Chemical Society, 2021, 143, 20513-20523.	6.6	49
237	Niche applications of magnetically responsive photonic structures. Journal of Materials Chemistry, 2010, 20, 5777.	6.7	48
238	High-yield halide-free synthesis of biocompatible Au nanoplates. Chemical Communications, 2016, 52, 398-401.	2.2	48
239	Selfâ€Aligned Anisotropic Plasmonic Nanostructures. Advanced Materials, 2019, 31, e1900789.	11.1	48
240	γ-Radiation synthesis of poly(acrylic acid)–metal nanocomposites. Materials Letters, 1998, 37, 354-358.	1.3	46
241	Self-assembly and tunable plasmonic property of gold nanoparticles on mercapto-silica microspheres. Journal of Materials Chemistry, 2009, 19, 4597.	6.7	46
242	Colloidal Crystallization and Structural Changes in Suspensions of Silica/Magnetite Core–Shell Nanoparticles. Langmuir, 2012, 28, 14777-14783.	1.6	46
243	Magnetic Assembly and Patterning of General Nanoscale Materials through Nonmagnetic Templates. Nano Letters, 2013, 13, 264-271.	4.5	46
244	Dynamically Switchable Multicolor Electrochromic Films. Small, 2019, 15, e1804974.	5.2	46
245	Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review. Electrochemistry Communications, 2021, 131, 107118.	2.3	46
246	Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir. Nano Letters, 2010, 10, 4989-4993.	4.5	45
247	Assembly and Photonic Properties of Superparamagnetic Colloids in Complex Magnetic Fields. Langmuir, 2011, 27, 13444-13450.	1.6	45
248	Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy, 2018, 53, 559-566.	8.2	45
249	A Blown Film Process to Diskâ€Shaped Polymer Ellipsoids. Advanced Materials, 2008, 20, 4599-4602.	11.1	44
250	Determination of Solvation Layer Thickness by a Magnetophotonic Approach. ACS Nano, 2012, 6, 4196-4202.	7.3	44
251	Size-Tailored Synthesis of Silver Quasi-Nanospheres by Kinetically Controlled Seeded Growth. Langmuir, 2013, 29, 10559-10565.	1.6	44
252	Explaining the Size Dependence in Platinumâ€Nanoparticleâ€Catalyzed Hydrogenation Reactions. Angewandte Chemie, 2016, 128, 15885-15890.	1.6	44

#	Article	IF	CITATIONS
253	A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation. Journal of Materials Chemistry A, 0, , .	5.2	44
254	Size-controlled synthesis of highly water-soluble silver nanocrystals. Journal of Solid State Chemistry, 2008, 181, 1524-1529.	1.4	43
255	Magnetic–Optical Core–Shell Nanostructures for Highly Selective Photoelectrochemical Aptasensing. Analytical Chemistry, 2020, 92, 4094-4100.	3.2	43
256	Mass Transport across the Porous Oxide Shells of Core–Shell and Yolk–Shell Nanostructures in Liquid Phase. Journal of Physical Chemistry C, 2013, 117, 20043-20053.	1.5	42
257	Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. Journal of Materials Research, 2013, 28, 362-368.	1.2	42
258	Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie, 2018, 130, 11852-11856.	1.6	42
259	Nanoconjugates of Ag/Au/Carbon Nanotube for Alkyne-Meditated Ratiometric SERS Imaging of Hypoxia in Hepatic Ischemia. Analytical Chemistry, 2019, 91, 4529-4536.	3.2	42
260	A dual responsive photonic liquid for independent modulation of color brightness and hue. Materials Horizons, 2021, 8, 2032-2040.	6.4	42
261	A pressure sensor based on the orientational dependence of plasmonic properties of gold nanorods. Nanoscale, 2015, 7, 14483-14488.	2.8	41
262	Evaluation of the Effective Photoexcitation Distances in the Photocatalytic Production of H ₂ from Water using Au@Void@TiO ₂ Yolk–Shell Nanostructures. ACS Energy Letters, 2016, 1, 52-56.	8.8	41
263	Tailored synthesis of C@TiO2 yolk–shell nanostructures for highly efficient photocatalysis. Catalysis Today, 2016, 264, 261-269.	2.2	41
264	Thickness-dependent wrinkling of PDMS films for programmable mechanochromic responses. Nano Research, 2020, 13, 1882-1888.	5.8	41
265	Synthesis and characterization of poly(butyl acrylate-co-styrene)–silver nanocomposites by γ radiation in W/O microemulsions. Chemical Communications, 1998, , 941-942.	2.2	40
266	Construction of Au–Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Materials Horizons, 2017, 4, 584-590.	6.4	40
267	Self-assembly of noble metal nanoparticles into sub-100 nm colloidosomes with collective optical and catalytic properties. Chemical Science, 2017, 8, 6103-6110.	3.7	40
268	Photocatalytic Reversible Color Switching Based on Titania Nanoparticles. Small Methods, 2018, 2, 1700273.	4.6	40
269	Tuning the Colloidal Crystal Structure of Magnetic Particles by External Field. Angewandte Chemie - International Edition, 2015, 54, 1803-1807.	7.2	39
270	Charge Stabilization of Superparamagnetic Colloids for Highâ€Performance Responsive Photonic Structures. Small, 2012, 8, 3795-3799.	5.2	38

#	Article	IF	CITATIONS
271	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 14952-14957.	7.2	38
272	A Unique Disintegration–Reassembly Route to Mesoporous Titania Nanocrystalline Hollow Spheres with Enhanced Photocatalytic Activity. Advanced Functional Materials, 2018, 28, 1704208.	7.8	37
273	Building Highâ€Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation. Advanced Functional Materials, 2018, 28, 1803199.	7.8	37
274	High-resolution combinatorial patterning of functional nanoparticles. Nature Communications, 2020, 11, 6002.	5.8	37
275	Cation Exchange in ZnSe Nanocrystals for Signal Amplification in Bioassays. Analytical Chemistry, 2011, 83, 402-408.	3.2	36
276	Stabilization of noble metal nanostructures for catalysis and sensing. Nanoscale, 2018, 10, 20492-20504.	2.8	36
277	TiO2 nanoparticles as a soft X-ray molecular probe. Chemical Communications, 2008, , 2471.	2.2	35
278	Ultrathin Pt–Ag Alloy Nanotubes with Regular Nanopores for Enhanced Electrocatalytic Activity. Chemistry of Materials, 2018, 30, 7744-7751.	3.2	35
279	Polarizationâ€Modulated Multidirectional Photothermal Actuators. Advanced Materials, 2021, 33, e2006367.	11.1	35
280	Surface Engineering and Controlled Ripening for Seedâ€Mediated Growth of Au Islands on Au Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 16958-16964.	7.2	35
281	Airâ€Liquid Interfacial Selfâ€Assembly of Twoâ€Dimensional Periodic Nanostructured Arrays. ChemNanoMat, 2019, 5, 1338-1360.	1.5	34
282	Colloidal Assembly and Active Tuning of Coupled Plasmonic Nanospheres. Trends in Chemistry, 2020, 2, 593-608.	4.4	34
283	Self-Assembled TiO ₂ Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells. Chemistry of Materials, 2015, 27, 44-52.	3.2	33
284	Beyond spheres: Murphy's silver nanorods and nanowires. Chemical Communications, 2013, 49, 215-217.	2.2	32
285	Magnetically Tunable Plasmon Coupling of Au Nanoshells Enabled by Space-Free Confined Growth. Nano Letters, 2020, 20, 8242-8249.	4.5	32
286	A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 3333-3343.	5.2	32
287	Single-crystalline CoFe nanoparticles encapsulated in N-doped carbon nanotubes as a bifunctional catalyst for water splitting. Materials Chemistry Frontiers, 2020, 4, 2307-2313.	3.2	32
288	Self-assembly of superstructures at all scales. Matter, 2021, 4, 927-941.	5.0	32

#	Article	IF	CITATIONS
289	Mesoporous titanate-based cation exchanger for efficient removal of metal cations. Journal of Materials Chemistry A, 2013, 1, 5097.	5.2	31
290	Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 13033-13039.	5.2	31
291	Coupling morphological and magnetic anisotropy for assembling tetragonal colloidal crystals. Science Advances, 2021, 7, eabh1289.	4.7	31
292	Photocatalytic Surface-Initiated Polymerization on TiO ₂ toward Well-Defined Composite Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 538-546.	4.0	31
293	Formation Mechanism and Size Control in One-Pot Synthesis of Mercapto-Silica Colloidal Spheres. Langmuir, 2011, 27, 3372-3380.	1.6	30
294	Magnetically responsive photonic films with high tunability and stability. Nano Research, 2015, 8, 611-620.	5.8	30
295	Mesoporous TiO2 nanospheres loaded with highly dispersed Pd nanoparticles for pH-universal hydrogen evolution reaction. Materials Today Nano, 2019, 6, 100038.	2.3	30
296	Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution. Materials Today Chemistry, 2019, 11, 112-118.	1.7	30
297	Synthesis and characterization of ZnS colloidal particles via \hat{I}^3 -radiation. Radiation Physics and Chemistry, 1999, 55, 353-356.	1.4	29
298	Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Research, 2018, 11, 1822-1833.	5.8	29
299	Optimization of elastomeric phase masks for near-field photolithography. Applied Physics Letters, 2001, 78, 2431-2433.	1.5	28
300	Stabilization of ultrafine metal nanocatalysts on thin carbon sheets. Nanoscale, 2015, 7, 18320-18326.	2.8	28
301	Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries. Electrochimica Acta, 2019, 321, 134723.	2.6	28
302	Superparamagnetic nanocrystal clusters for enrichment of low-abundance peptides and proteins. Chemical Communications, 2010, 46, 6174.	2.2	27
303	Control of the crystallinity in TiO2 microspheres through silica impregnation. CrystEngComm, 2012, 14, 7680.	1.3	27
304	Magnetochromatic Thinâ€Film Microplates. Advanced Materials, 2015, 27, 86-92.	11.1	27
305	Multicolor Photonic Pigments for Rotationâ€Asymmetric Mechanochromic Devices. Advanced Materials, 2022, 34, e2107398.	11.1	27
306	Contribution of multiple reflections to light utilization efficiency of submicron hollow TiO2 photocatalyst. Science China Materials, 2016, 59, 1017-1026.	3.5	26

#	Article	IF	CITATIONS
307	Confined Growth of Quantum Dots in Silica Spheres by Ion Exchange of "Trapped NH4+―for White-Light Emission. CheM, 2019, 5, 2195-2214.	5.8	26
308	Spaceâ€Confined Seeded Growth of Cu Nanorods with Strong Surface Plasmon Resonance for Photothermal Actuation. Angewandte Chemie, 2019, 131, 9376-9382.	1.6	26
309	Anisotropic Seeded Growth of Ag Nanoplates Confined in Shapeâ€Deformable Spaces. Angewandte Chemie - International Edition, 2021, 60, 4117-4124.	7.2	26
310	Anisotropically Shaped Magnetic/Plasmonic Nanocomposites for Information Encryption and Magnetic-Field-Direction Sensing. Research, 2018, 2018, 7527825.	2.8	25
311	Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors. Nanoscale, 2013, 5, 11577.	2.8	24
312	Photoreversible luminescence switching of CsPbl ₃ nanocrystals sensitized by photochromic AgI nanocrystals. Nanoscale, 2019, 11, 3193-3199.	2.8	24
313	Optical tuning by the self-assembly and disassembly of chain-like plasmonic superstructures. National Science Review, 2018, 5, 128-130.	4.6	23
314	Nanocrystals@Hollow Mesoporous Silica Reverseâ€Bumpyâ€Ball Structure Nanoreactors by a Versatile Microemulsionâ€Templated Approach. Small Methods, 2018, 2, 1800105.	4.6	23
315	Alkyne/Ruthenium(II) Complex-Based Ratiometric Surface-Enhanced Raman Scattering Nanoprobe for In Vitro and Ex Vivo Tracking of Carbon Monoxide. Analytical Chemistry, 2020, 92, 924-931.	3.2	23
316	Manipulation of Interfacial Diffusion for Controlling Nanoscale Transformation. Accounts of Chemical Research, 2021, 54, 1168-1177.	7.6	23
317	Crystalâ€toâ€Gel Transformation Stimulated by a Solidâ€State E→Z Photoisomerization. Angewandte Chemie - International Edition, 2019, 58, 15429-15434.	7.2	22
318	Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation. Science of the Total Environment, 2022, 824, 153790.	3.9	22
319	Magnetically tunable colloidal micromirrors. Nanoscale Horizons, 2016, 1, 64-68.	4.1	21
320	Gold nanoshurikens with uniform sharp tips for chemical sensing by the localized surface plasmon resonance. Nanoscale, 2017, 9, 17037-17043.	2.8	21
321	Preparation and characterization of polyacrylamide–silver nanocomposites. Radiation Physics and Chemistry, 1998, 53, 567-570.	1.4	20
322	Ship in a Bottle: Inâ€situ Confined Growth of Complex Yolkâ€shell Catalysts. ChemCatChem, 2013, 5, 1287-1288.	1.8	20
323	Digestive ripening in the formation of monodisperse silver nanospheres. Materials Chemistry Frontiers, 2018, 2, 1328-1333.	3.2	20
324	Migration of Iron Oxide Nanoparticle through a Silica Shell by the Redox-Buffering Effect. ACS Nano, 2018, 12, 10949-10956.	7.3	20

#	Article	IF	CITATIONS
325	The Calculated Dielectric Function and Optical Properties of Bimetallic Alloy Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 2721-2727.	1.5	20
326	Phosphate removal using surface enriched hematite and tetra-n-butylammonium bromide incorporated polyacrylonitrile composite nanofibers. Science of the Total Environment, 2021, 770, 145364.	3.9	20
327	Multi-colored hollow carbon-containing titania nanoshells for anti-counterfeiting applications. Journal of Materials Chemistry C, 2019, 7, 14080-14087.	2.7	19
328	Multilayered supermolecular structures self-assembled from polyelectrolytes and cyclodextrin host–guest complexes. Journal of Materials Chemistry, 2000, 10, 603-605.	6.7	18
329	Themed issue: Chemical transformations of nanoparticles. Journal of Materials Chemistry, 2011, 21, 11454.	6.7	18
330	Plasmon-Enhanced Oxygen Evolution Catalyzed by Fe ₂ N-Embedded TiO _{<i>x</i>} N _{<i>y</i>} Nanoshells. ACS Applied Energy Materials, 2020, 3, 146-151.	2.5	18
331	Introduction: Smart Materials. Chemical Reviews, 2022, 122, 4885-4886.	23.0	18
332	Au@Void@TiO2 yolk–shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648, 150-155.	0.8	17
333	Formation of colloidal nanocrystal clusters of iron oxide by controlled ligand stripping. Chemical Communications, 2016, 52, 128-131.	2.2	17
334	Porous SiO2-coated Au-Ag alloy nanoparticles for the alkyne-mediated ratiometric Raman imaging analysis of hydrogen peroxide in live cells. Analytica Chimica Acta, 2019, 1057, 1-10.	2.6	17
335	Lowâ€Temperature Carbon Monoxide Oxidation with Au–Cu Meatballâ€Like Cages Prepared by Galvanic Replacement. ChemSusChem, 2013, 6, 1883-1887.	3.6	16
336	Water-assisted crystallization of mesoporous anatase TiO ₂ nanospheres. Nanoscale, 2016, 8, 9113-9117.	2.8	16
337	Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Research, 2021, 14, 2819-2825.	5.8	16
338	Multiplexed Affinity-Based Protein Complex Purification. Analytical Chemistry, 2008, 80, 7068-7074.	3.2	15
339	PDMS rubber as a single-source precursor for templated growth of silica nanotubes. Chemical Communications, 2009, , 914.	2.2	15
340	Dualâ€Pore Carbon Shells for Efficient Removal of Humic Acid from Water. Chemistry - A European Journal, 2017, 23, 16249-16256.	1.7	15
341	Magnetic cellulose microcrystals with tunable magneto-optical responses. Applied Materials Today, 2020, 20, 100749.	2.3	15
342	Fatigue Resistant Aerogel/Hydrogel Nanostructured Hybrid for Highly Sensitive and Ultrabroad Pressure Sensing. Small, 2022, 18, e2104706.	5.2	15

#	Article	IF	CITATIONS
343	Facet Selectivity of Ligands on Silver Nanoplates: Molecular Mechanics Study. Journal of Physical Chemistry C, 2014, 118, 21589-21598.	1.5	14
344	Photocatalytic Selfâ€Doped SnO 2â^' x Nanocrystals Drive Visibleâ€Lightâ€Responsive Color Switching. Angewandte Chemie, 2017, 129, 7900-7904.	1.6	14
345	Smart and Responsive Micro―and Nanostructured Materials. Advanced Functional Materials, 2020, 30, 1907059.	7.8	14
346	Creation and Reconstruction of Thermochromic Au Nanorods with Surface Concavity. Journal of the American Chemical Society, 2021, 143, 15791-15799.	6.6	14
347	Current Chemistry: Building Complex Structures from Monodisperse Spherical Colloids. Australian Journal of Chemistry, 2001, 54, 287.	0.5	13
348	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie, 2016, 128, 2207-2210.	1.6	13
349	Ethylene glycol-assisted coating of titania on nanoparticles. Dalton Transactions, 2016, 45, 10076-10084.	1.6	13
350	AgInS2quantum dots for the detection of trinitrotoluene. Nanotechnology, 2017, 28, 015501.	1.3	13
351	Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting. Nanoscale, 2019, 11, 20527-20533.	2.8	13
352	Ligand-Assisted Solid-State Transformation of Nanoparticles. Chemistry of Materials, 2020, 32, 3271-3277.	3.2	13
353	Formation of resorcinol-formaldehyde hollow nanoshells through a dissolution–regrowth process. Nanoscale, 2020, 12, 15460-15465.	2.8	13
354	Customizable Ligand Exchange for Tailored Surface Property of Noble Metal Nanocrystals. Research, 2020, 2131806.	2.8	13
355	Rapid Highâ€Contrast Photoreversible Coloration of Surfaceâ€Functionalized Nâ€Doped TiO ₂ Nanocrystals for Rewritable Lightâ€Printing. Angewandte Chemie - International Edition, 2022, 61, e202203700.	7.2	13
356	MACROPOROUS MATERIALS CONTAINING THREE-DIMENSIONALLY PERIODIC STRUCTURES. , 2003, , 69-100.		12
357	Lithographic compartmentalization of emulsion droplet templates for microparticles with multiple nanostructured compartments. Chemical Communications, 2012, 48, 6091.	2.2	12
358	A Versatile â€~Click Chemistry' Route to Sizeâ€Restricted, Robust, and Functionalizable Hydrophilic Nanocrystals. Small, 2015, 11, 1644-1648.	5.2	12
359	Creating Chameleon-like Smart Actuators. Matter, 2019, 1, 550-551.	5.0	12
360	Dynamic Tuning of Optical Transmittance of 1D Colloidal Assemblies of Magnetic Nanostructures. Advanced Intelligent Systems, 2019, 1, 1900099.	3.3	12

#	Article	IF	CITATIONS
361	Ligand exchange on noble metal nanocrystals assisted by coating and etching of cuprous oxide. Materials Chemistry Frontiers, 2020, 4, 1614-1622.	3.2	11
362	Seeded microemulsion polymerization of butyl acrylate. Journal of Polymer Science Part A, 1998, 36, 2631-2635.	2.5	10
363	Preface to the special issue on nanostructured catalysts. Nano Research, 2011, 4, 1-2.	5.8	10
364	Shaping Nanostructures for Applications in Energy Conversion and Storage. ChemSusChem, 2013, 6, 1781-1783.	3.6	10
365	Nanomaterials engineering and applications in catalysis. Pure and Applied Chemistry, 2014, 86, 53-69.	0.9	10
366	Heteroepitaxial Growth of Wellâ€Dispersed Co 3 O 4 Nanocatalysts on Porous ZnO Nanoplates via Successive Hydrothermal Deposition. ChemNanoMat, 2016, 2, 946-951.	1.5	10
367	Controlled Synthesis of Octahedral Platinumâ€Based Mesocrystals by Oriented Aggregation. Chemistry - A European Journal, 2017, 23, 6803-6810.	1.7	10
368	Strong photoluminescence of Cs4PbBr6 crystals: a long mystery story. Science Bulletin, 2018, 63, 525-526.	4.3	10
369	Assembly of Colloidal Nanoparticles into Hollow Superstructures by Controlling Phase Separation in Emulsion Droplets. Small Structures, 2021, 2, 2100005.	6.9	10
370	Fast Fourier Transform-weighted Photoacoustic Imaging by In Vivo Magnetic Alignment of Hybrid Nanorods. Nano Letters, 2022, 22, 5158-5166.	4.5	10
371	Crystalâ€toâ€Gel Transformation Stimulated by a Solidâ€State E→Z Photoisomerization. Angewandte Chemie, 2019, 131, 15575-15580.	1.6	9
372	Nickel nanoparticles individually encapsulated in densified ceramic shells for thermally stable solar energy absorption. Journal of Materials Chemistry A, 2019, 7, 3039-3045.	5.2	9
373	Surfaceâ€Initiated Redox Route to Hollow MnO ₂ Nanostructures. ChemNanoMat, 2020, 6, 1186-1190.	1.5	9
374	Monitoring the shape evolution of Pd nanocubes to octahedra by PdS frame markers. Nanoscale, 2014, 6, 3518-3521.	2.8	8
375	Confined growth of CdSe quantum dots in colloidal mesoporous silica for multifunctional nanostructures. Science China Materials, 2015, 58, 481-489.	3.5	8
376	Surface-bound sacrificial electron donors in promoting photocatalytic reduction on titania nanocrystals. Nanoscale, 2019, 11, 19512-19519.	2.8	8
377	Superparamagnetic Magnetite Nanoparticle Superstructures for Optical Modulation/Chopping. Journal of Physical Chemistry C, 2010, 114, 17868-17873.	1.5	7
378	Efficiency-based power MOSFETs size optimization method for DC-DC buck converters. , 2019, , .	_	7

#	Article	IF	CITATIONS
379	Fluorine-assisted structural engineering of colloidal anatase TiO2 hierarchical nanocrystals for enhanced photocatalytic hydrogen production. Nanoscale, 2019, 11, 22575-22584.	2.8	7
380	Gold nanocups with multimodal plasmon resonance for quantum-dot random lasing. Applied Materials Today, 2022, 26, 101358.	2.3	7
381	High-Precision Colorimetric Sensing by Dynamic Tracking of Solvent Diffusion in Hollow-Sphere Photonic Crystals. Research, 2022, 2022, .	2.8	7
382	Cation Exchange Reactions in Ionic Nanocrystals ChemInform, 2005, 36, no.	0.1	6
383	Themed issue: the chemistry of photonic crystals and metamaterials. Journal of Materials Chemistry C, 2013, 1, 6001.	2.7	6
384	Electrochemical Fabrication and Sensing Application of Multicolored Silver Films. Advanced Materials Interfaces, 2018, 5, 1800277.	1.9	6
385	Anisotropic Seeded Growth of Ag Nanoplates Confined in Shapeâ€Deformable Spaces. Angewandte Chemie, 2021, 133, 4163-4170.	1.6	6
386	Rapid Highâ€Contrast Photoreversible Coloration of Surfaceâ€Functionalized Nâ€Doped TiO ₂ Nanocrystals for Rewritable Lightâ€Printing. Angewandte Chemie, 2022, 134, .	1.6	6
387	Magnetic Assembly and Fieldâ€Tuning of Ellipsoidalâ€Nanoparticleâ€Based Colloidal Photonic Crystals. Angewandte Chemie, 2015, 127, 7183-7187.	1.6	5
388	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, 15176-15181.	1.6	5
389	Seeds for the Future: Growing Chemistry Trends. Trends in Chemistry, 2020, 2, 275-277.	4.4	5
390	A Self-Assembly Approach to the Fabrication of Patterned, Two-Dimensional Arrays of Microlenses of Organic Polymers. , 2001, 13, 34.		5
391	Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures. Nano Research, 2023, 16, 5873-5879.	5.8	5
392	Colloidal Crystals: Recent Developments and Niche Applications. , 0, , 284-316.		4
393	Colorimetric Sulfide Sensing: Au/Agl Dimeric Nanoparticles for Highly Selective and Sensitive Colorimetric Detection of Hydrogen Sulfide (Adv. Funct. Mater. 26/2018). Advanced Functional Materials, 2018, 28, 1870176.	7.8	4
394	Surface Engineering and Controlled Ripening for Seedâ€Mediated Growth of Au Islands on Au Nanocrystals. Angewandte Chemie, 2021, 133, 17095-17101.	1.6	4
395	Insect-inspired nanofibrous polyaniline multi-scale films for hybrid polarimetric imaging with scattered light. Nanoscale Horizons, 2022, 7, 319-327.	4.1	4
396	Selfâ€assembly of colloidal nanoparticles into encapsulated hollow superstructures. Aggregate, 2022, 3, .	5.2	4

#	Article	IF	CITATIONS
397	A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes. Materials Research Society Symposia Proceedings, 2000, 636, 421.	0.1	3
398	A PVT-Robust Super-Regenerative Receiver with Background Frequency Calibration and Concurrent Quenching Waveform. Electronics (Switzerland), 2019, 8, 1119.	1.8	3
399	An Intermittent Frequency Synthesizer With Accurate Frequency Detection for Fast Duty-Cycled Receivers. IEEE Access, 2020, 8, 45148-45155.	2.6	3
400	A High-Performance OTA with Hybrid of Inverter-Based OTA and Nauta OTA for High Speed Applications. , 2021, , .		3
401	Structural Coloration: Shearâ€Induced Assembly of Liquid Colloidal Crystals for Largeâ€5cale Structural Coloration of Textiles (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170133.	7.8	3
402	Imaging Shape Dependent Surface Plasmon Modes in Noble Metal Nanoparticles. Microscopy and Microanalysis, 2009, 15, 136-137.	0.2	2
403	Magnetically responsive photonic nanostructures: making color using magnets. , 2011, , .		2
404	Core/Shell Nanostructures: Etchingâ€Free Epitaxial Growth of Gold on Silver Nanostructures for High Chemical Stability and Plasmonic Activity (Adv. Funct. Mater. 34/2015). Advanced Functional Materials, 2015, 25, 5568-5568.	7.8	2
405	Oxygen Evolution Reaction: Selfâ€Templated Fabrication of CoO–MoO ₂ Nanocages for Enhanced Oxygen Evolution (Adv. Funct. Mater. 34/2017). Advanced Functional Materials, 2017, 27, .	7.8	2
406	Hydrogen Evolution: Embedding RhP <i>_x</i> in N, P Coâ€Đoped Carbon Nanoshells Through Synergetic Phosphorization and Pyrolysis for Efficient Hydrogen Evolution (Adv. Funct. Mater.) Tj ETQqO 0 0 rgB	otal: ا	۶ 12 Tf 50 37
407	Ultraâ€lowâ€power FSK demodulator with frequencyâ€offset tolerance. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 768-772.	0.8	2
408	Dual Roles of Polymeric Capping Ligands in the Surface-Protected Etching of Colloidal Silica. ACS Applied Materials & Interfaces, 2020, 12, 38751-38756.	4.0	2
409	Distinct expression profiles of peptides in placentae from preeclampsia and normal pregnancies. Scientific Reports, 2020, 10, 17558.	1.6	2
410	A Type-II Analog PLL with Time-Domain Processing. , 2021, , .		2
411	Magnetic assembly of colloidal nanoparticles into responsive photonic crystals. , 2023, , 65-78.		2
412	Photonic crystals fabricated from gold-silica core-shell nanoparticles. , 2002, 4809, 197.		1
413	Magnetochromatic Microspheres: Real-Time Optofluidic Synthesis of Magnetochromatic Microspheres for Reversible Structural Color Patterning (Small 9/2011). Small, 2011, 7, 1142-1142.	5.2	1
414	A Lowâ€Power Lowâ€Cost 780MHz CMOS FSK Receiver for Shortâ€Range Wireless Communication. Chinese Journal of Electronics, 2016, 25, 220-226.	0.7	1

#	Article	IF	CITATIONS
415	A Blind Background Calibration Technique for Super-Regenerative Receivers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 344-348.	2.2	1
416	Multicolor Photonic Pigments for Rotationâ€Asymmetric Mechanochromic Devices (Adv. Mater. 4/2022). Advanced Materials, 2022, 34, .	11.1	1
417	Synthesis, Characterization, and Utilization of Single Crystalline Nanoparticles of Silver. Materials Research Society Symposia Proceedings, 1999, 581, 83.	0.1	0
418	Nanowires by solution-phase synthesis. , 2002, , .		0
419	Photonic bandgap crystals by self-assembly. , 2002, , .		0
420	Photonic crystals self-assembled against templates. , 2002, , .		0
421	Structural color printing: full color printing with single ink. , 2010, , .		0
422	Optofluidic generation of color and shape encoded microparticle for multiplexed bioassay. Proceedings of SPIE, 2010, , .	0.8	0
423	MAGNETICALLY TUNABLE COLLOIDAL PHOTONIC CRYSTALS. , 2011, , 1-35.		0
424	Magnetically responsive photonic nanostructures. SPIE Newsroom, 2011, , .	0.1	0
425	Rücktitelbild: Magnetically Responsive Photonic Nanochains (Angew. Chem. 16/2011). Angewandte Chemie, 2011, 123, 3900-3900.	1.6	0
426	Back Cover: Magnetically Responsive Photonic Nanochains (Angew. Chem. Int. Ed. 16/2011). Angewandte Chemie - International Edition, 2011, 50, 3816-3816.	7.2	0
427	Rücktitelbild: Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew.) Tj ETQq1 1 C).7 8.4 314 r	gBT /Overloc
428	Frontispiz: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, .	1.6	0
429	Frontispiece: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, .	7.2	0
430	Nanostructures: Controllable Fabrication of Au Nanocups by Confined‣pace Thermal Dewetting for OCT Imaging (Adv. Mater. 26/2017). Advanced Materials, 2017, 29, .	11.1	0
431	Design of a high-speed RF envelope detector with dynamic load and derivative superposition techniques. , 2020, , .		0
432	A High Bandwidth-Power Efficiency, Low THD2,3 Driver Amplifier with Dual-Loop Active Frequency Compensation for High-Speed Applications. Electronics (Switzerland), 2021, 10, 2311.	1.8	0

#	Article	IF	CITATIONS
433	Self-Assembly of Monodispersed Spherical Colloids into Complex Structures. , 2002, , .		Ο
434	Advanced Polymer Nanoparticles with Nonspherical Morphologies. , 2010, , 61-95.		0
435	Characterisation of Upconversion Nanoparticles for Imaging. , 2013, , .		Ο
436	CHAPTER 9. Magnetic Assembly and Tuning of Colloidal Responsive Photonic Nanostructures. RSC Smart Materials, 2013, , 234-261.	0.1	0
437	Templated Synthesis of Plasmonic Nanostructures. , 2022, , 305-347.		0