
Dale R Corbett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284706/publications.pdf Version: 2024-02-01

DALE P CODRETT

#	Article	IF	CITATIONS
1	Early-phase dose articulation trials are underutilized for post-stroke motor recovery: A systematic scoping review. Annals of Physical and Rehabilitation Medicine, 2022, 65, 101487.	1.1	4
2	Validity of Bioelectric Impedance in Relation to Dual-Energy X-Ray Absorptiometry for Measuring Baseline and Change in Body Composition After an Exercise Program in Stroke. Journal of Strength and Conditioning Research, 2022, Publish Ahead of Print, .	1.0	1
3	Advancing Stroke Recovery Through Improved Articulation of Nonpharmacological Intervention Dose. Stroke, 2021, 52, 761-769.	1.0	39
4	An Exercise Mimetic Approach to Reduce Poststroke Deconditioning and Enhance Stroke Recovery. Neurorehabilitation and Neural Repair, 2021, 35, 471-485.	1.4	4
5	Remote Ischemic Conditioning and Stroke Recovery. Neurorehabilitation and Neural Repair, 2021, 35, 545-549.	1.4	14
6	Multidimensional Phase I Dose Ranging Trials for Stroke Recovery Interventions: Key Challenges and How to Address Them. Neurorehabilitation and Neural Repair, 2021, 35, 663-679.	1.4	7
7	Neuroprotection by Remote Ischemic Conditioning in Rodent Models of Focal Ischemia: a Systematic Review and Meta-Analysis. Translational Stroke Research, 2021, 12, 461-473.	2.3	21
8	Timing and Dose of Upper Limb Motor Intervention After Stroke: A Systematic Review. Stroke, 2021, 52, 3706-3717.	1.0	22
9	From the Lab to Patients: a Systematic Review and Meta-Analysis of Mesenchymal Stem Cell Therapy for Stroke. Translational Stroke Research, 2020, 11, 345-364.	2.3	48
10	Trial of remote ischaemic preconditioning in vascular cognitive impairment (TRIC-VCI): protocol. BMJ Open, 2020, 10, e040466.	0.8	7
11	Poststroke Impairment and Recovery Are Predicted by Task-Specific Regionalization of Injury. Journal of Neuroscience, 2020, 40, 6082-6097.	1.7	19
12	Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiology of Disease, 2020, 137, 104756.	2.1	22
13	RecoverNow: A patient perspective on the delivery of mobile tablet-based stroke rehabilitation in the acute care setting. International Journal of Stroke, 2019, 14, 174-179.	2.9	16
14	A systematic review protocol of timing, efficacy and cost effectiveness of upper limb therapy for motor recovery post-stroke. Systematic Reviews, 2019, 8, 187.	2.5	21
15	Cognition in Stroke Rehabilitation and Recovery Research: Consensus-Based Core Recommendations From the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2019, 33, 943-950.	1.4	8
16	A stroke recovery trial development framework: Consensus-based core recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 792-802.	2.9	64
17	Dose Articulation in Preclinical and Clinical Stroke Recovery: Refining a Discovery Research Pipeline and Presenting a Scoping Review Protocol. Frontiers in Neurology, 2019, 10, 1148.	1.1	15
18	A Stroke Recovery Trial Development Framework: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2019, 33, 959-969.	1.4	24

#	Article	IF	CITATIONS
19	Cognition in stroke rehabilitation and recovery research: Consensus-based core recommendations from the second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 774-782.	2.9	52
20	RecoverNow: A mobile tablet-based therapy platform for early stroke rehabilitation. PLoS ONE, 2019, 14, e0210725.	1.1	24
21	An RFID-based activity tracking system to monitor individual rodent behavior in environmental enrichment: Implications for post-stroke cognitive recovery. Journal of Neuroscience Methods, 2019, 324, 108306.	1.3	8
22	Setting the scene for the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 450-456.	2.9	44
23	Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations. Frontiers in Neurology, 2019, 10, 1187.	1.1	49
24	Characterizing Spontaneous Motor Recovery Following Cortical and Subcortical Stroke in the Rat. Neurorehabilitation and Neural Repair, 2019, 33, 27-37.	1.4	25
25	Identifying stroke therapeutics from preclinical models: A protocol for a novel application of network meta-analysis. F1000Research, 2019, 8, 11.	0.8	7
26	Does Stroke Rehabilitation Really Matter? Part B: An Algorithm for Prescribing an Effective Intensity of Rehabilitation. Neurorehabilitation and Neural Repair, 2018, 32, 73-83.	1.4	81
27	Reduced Cerebrovascular Reactivity and Increased Resting Cerebral Perfusion in Rats Exposed to a Cafeteria Diet. Neuroscience, 2018, 371, 166-177.	1.1	10
28	Does Stroke Rehabilitation Really Matter? Part A: Proportional Stroke Recovery in the Rat. Neurorehabilitation and Neural Repair, 2018, 32, 3-6.	1.4	27
29	Aerobic With Resistance Training or Aerobic Training Alone Poststroke: A Secondary Analysis From a Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 2018, 32, 209-222.	1.4	34
30	Short- and Long-term Exposure to Low and High Dose Running Produce Differential Effects on Hippocampal Neurogenesis. Neuroscience, 2018, 369, 202-211.	1.1	16
31	Executive dysfunction and blockage of brain microvessels in a rat model of vascular cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1727-1740.	2.4	9
32	Behavioral outcome measures to improve experimental stroke research. Behavioural Brain Research, 2018, 352, 161-171.	1.2	68
33	ls Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation?. Frontiers in Behavioral Neuroscience, 2018, 12, 135.	1.0	98
34	Cyclosporin A-Mediated Activation of Endogenous Neural Precursor Cells Promotes Cognitive Recovery in a Mouse Model of Stroke. Frontiers in Aging Neuroscience, 2018, 10, 93.	1.7	17
35	Synergistic Effects of Enriched Environment and Task-Specific Reach Training on Poststroke Recovery of Motor Function. Stroke, 2018, 49, 1496-1503.	1.0	41
36	Metformin Preconditioning of Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells Promotes Their Engraftment and Improves Post-Stroke Regeneration and Recovery. Stem Cells and Development, 2018, 27, 1085-1096.	1.1	33

#	Article	IF	CITATIONS
37	Post-stroke kinematic analysis in rats reveals similar reaching abnormalities as humans. Scientific Reports, 2018, 8, 8738.	1.6	21
38	The Ontario Neurodegenerative Disease Research Initiative (ONDRI). Canadian Journal of Neurological Sciences, 2017, 44, 196-202.	0.3	72
39	Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilitation and Neural Repair, 2017, 31, 793-799.	1.4	225
40	Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable translational working group. International Journal of Stroke, 2017, 12, 462-471.	2.9	82
41	Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. International Journal of Stroke, 2017, 12, 444-450.	2.9	624
42	Translational Stroke Research. Stroke, 2017, 48, 2632-2637.	1.0	108
43	Enhancing the Alignment of the Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core Recommendations From the Stroke Recovery and Rehabilitation Roundtable Translational Working Group. Neurorehabilitation and Neural Repair, 2017, 31, 699-707.	1.4	64
44	Moving Rehabilitation Research Forward: Developing Consensus Statements for Rehabilitation and Recovery Research. Neurorehabilitation and Neural Repair, 2017, 31, 694-698.	1.4	40
45	Neurovascular unit remodelling in the subacute stage of stroke recovery. NeuroImage, 2017, 146, 869-882.	2.1	45
46	Factors Affecting Attendance at an Adapted Cardiac Rehabilitation Exercise Program for Individuals with Mobility Deficits Poststroke. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 87-94.	0.7	38
47	Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. International Journal of Stroke, 2016, 11, 454-458.	2.9	137
48	A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat. Physiology and Behavior, 2016, 167, 382-391.	1.0	74
49	Promoting brain health through exercise and diet in older adults: a physiological perspective. Journal of Physiology, 2016, 594, 4485-4498.	1.3	77
50	Prescribing Aerobic Exercise Intensity without a Cardiopulmonary Exercise Test Post Stroke: Utility of the Six-Minute Walk Test. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 2222-2231.	0.7	21
51	Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia. Behavioural Brain Research, 2016, 304, 42-50.	1.2	21
52	Exercise and Environmental Enrichment as Enablers of Task-Specific Neuroplasticity and Stroke Recovery. Neurotherapeutics, 2016, 13, 395-402.	2.1	91
53	RecoverNow: Feasibility of a Mobile Tablet-Based Rehabilitation Intervention to Treat Post-Stroke Communication Deficits in the Acute Care Setting. PLoS ONE, 2016, 11, e0167950.	1.1	34
54	Time-to-Referral, Use, and Efficacy of Cardiac Rehabilitation After Heart Transplantation. Transplantation, 2015, 99, 594-601.	0.5	15

#	Article	IF	CITATIONS
55	Time course of neuronal death following endothelin-1 induced focal ischemia in rats. Journal of Neuroscience Methods, 2015, 242, 72-76.	1.3	19
56	Lost in translation. Progress in Brain Research, 2015, 218, 413-434.	0.9	50
57	The Effects of Delayed Reduction of Tonic Inhibition on Ischemic Lesion and Sensorimotor Function. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1601-1609.	2.4	59
58	Assessing cognitive function following medial prefrontal stroke in the rat. Behavioural Brain Research, 2015, 294, 102-110.	1.2	28
59	Prevalence of Individuals Experiencing the Effects of Stroke in Canada. Stroke, 2015, 46, 2226-2231.	1.0	140
60	Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke. Journal of Neuroscience, 2015, 35, 15113-15126.	1.7	42
61	The Effects of Poststroke Aerobic Exercise on Neuroplasticity: A Systematic Review of Animal and Clinical Studies. Translational Stroke Research, 2015, 6, 13-28.	2.3	110
62	A Cognitive Rehabilitation Paradigm Effective in Male Rats Lacks Efficacy in Female Rats. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1673-1680.	2.4	11
63	Early Poststroke Experience Differentially Alters Periinfarct Layer II and III Cortex. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 630-637.	2.4	20
64	How Can You Mend a Broken Brain? - Neurorestorative Approaches to Stroke Recovery. Cerebrovascular Diseases, 2014, 38, 233-239.	0.8	29
65	A peek behind the curtain: Peer review and editorial decision making at <i><scp>S</scp>troke</i> . Annals of Neurology, 2014, 76, 151-158.	2.8	12
66	Predictors of low bone mineral density of the stroke-affected hip among ambulatory individuals with chronic stroke. Osteoporosis International, 2014, 25, 2631-2638.	1.3	14
67	â€~Not-so-minor' stroke: Lasting psychosocial consequences of anterior cingulate cortical ischemia in the rat. Experimental Neurology, 2014, 261, 543-550.	2.0	9
68	Epidermal Growth Factor and Erythropoietin Infusion Accelerate Functional Recovery in Combination With Rehabilitation. Stroke, 2014, 45, 1856-1858.	1.0	30
69	Aerobic exercise effects on neuroprotection and brain repair following stroke: A systematic review and perspective. Neuroscience Research, 2014, 87, 8-15.	1.0	119
70	Impaired executive function following ischemic stroke in the rat medial prefrontal cortex. Behavioural Brain Research, 2014, 258, 106-111.	1.2	42
71	A reproducible Endothelin-1 model of forelimb motor cortex stroke in the mouse. Journal of Neuroscience Methods, 2014, 233, 34-44.	1.3	39
72	Physical activity in the prevention of ischemic stroke and improvement of outcomes: A narrative review. Neuroscience and Biobehavioral Reviews, 2013, 37, 133-137.	2.9	37

#	Article	IF	CITATIONS
73	Cognitive Rehabilitation Reduces Cognitive Impairment and Normalizes Hippocampal CA1 Architecture in a Rat Model of Vascular Dementia. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 872-879.	2.4	32
74	A Model of Persistent Learned Nonuse Following Focal Ischemia in Rats. Neurorehabilitation and Neural Repair, 2013, 27, 900-907.	1.4	18
75	Efficacy of Transplant and Endogenous Precursor and Stem Cell Interventions on Stroke Recovery: A Critical Assessment. , 2013, , 47-61.		Ο
76	Getting Neurorehabilitation Right. Neurorehabilitation and Neural Repair, 2012, 26, 923-931.	1.4	473
77	Improved Working Memory Following Novel Combinations of Physical and Cognitive Activity. Neurorehabilitation and Neural Repair, 2012, 26, 523-532.	1.4	64
78	Long-term exposure to high fat diet is bad for your brain: exacerbation of focal ischemic brain injury. Neuroscience, 2011, 182, 82-87.	1.1	67
79	Transport of epidermal growth factor in the stroke-injured brain. Journal of Controlled Release, 2011, 149, 225-235.	4.8	22
80	A Critical Threshold of Rehabilitation Involving Brain-Derived Neurotrophic Factor Is Required for Poststroke Recovery. Neurorehabilitation and Neural Repair, 2011, 25, 740-748.	1.4	121
81	Prolonged, 24-h Delayed Peripheral Inflammation Increases Short- and Long-Term Functional Impairment and Histopathological Damage after Focal Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1450-1459.	2.4	30
82	Brain-Derived Neurotrophic Factor Contributes to Recovery of Skilled Reaching After Focal Ischemia in Rats. Stroke, 2009, 40, 1490-1495.	1.0	319
83	The Effects of Repeated Rehabilitation "Tune-Ups―on Functional Recovery After Focal Ischemia in Rats. Neurorehabilitation and Neural Repair, 2009, 23, 886-894.	1.4	22
84	A high fat diet does not exacerbate CA1 injury and cognitive deficits following global ischemia in rats. Brain Research, 2009, 1252, 192-200.	1.1	20
85	Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews Neuroscience, 2009, 10, 861-872.	4.9	1,509
86	Transplantation of human embryonic stem cellâ€derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. European Journal of Neuroscience, 2009, 29, 562-574.	1.2	198
87	Assessing cognitive function after intracerebral hemorrhage in rats. Behavioural Brain Research, 2009, 198, 321-328.	1.2	39
88	Coaccumulation of Calcium and β-Amyloid in the Thalamus after Transient Middle Cerebral Artery Occlusion in Rats. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 263-268.	2.4	56
89	CA1 ischemic injury does not affect the ability of Mongolian gerbils to solve response, direction, or place problems. Brain Research, 2008, 1187, 194-200.	1.1	9
90	Long-term assessment of enriched housing and subventricular zone derived cell transplantation after focal ischemia in rats. Brain Research, 2008, 1231, 103-112.	1.1	37

#	Article	IF	CITATIONS
91	Does Treadmill Exercise Improve Performance of Cognitive or Upper-Extremity Tasks in People With Chronic Stroke? A Randomized Cross-Over Trial. Archives of Physical Medicine and Rehabilitation, 2008, 89, 2041-2047.	0.5	82
92	Diazepam delays the death of hippocampal CA1 neurons following global ischemia. Experimental Neurology, 2008, 214, 309-314.	2.0	26
93	Persistent behavioral impairments and neuroinflammation following global ischemia in the rat. European Journal of Neuroscience, 2008, 28, 2310-2318.	1.2	63
94	Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience, 2007, 146, 31-40.	1.1	140
95	Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. European Journal of Neuroscience, 2007, 25, 3453-3460.	1.2	96
96	Norepinephrine depletion facilitates recovery of function after focal ischemia in the rat. European Journal of Neuroscience, 2007, 26, 1822-1831.	1.2	9
97	Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. European Journal of Neuroscience, 2007, 26, 1845-1852.	1.2	43
98	A qualitative and quantitative analysis of skilled forelimb reaching impairment following intracerebral hemorrhage in rats. Brain Research, 2007, 1145, 204-212.	1.1	14
99	Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Research, 2007, 1150, 207-216.	1.1	148
100	Minocycline and intracerebral hemorrhage: influence of injury severity and delay to treatment. Experimental Neurology, 2006, 197, 189-196.	2.0	49
101	An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Experimental Neurology, 2006, 201, 324-334.	2.0	147
102	Dynamic changes in CA1 dendritic spines associated with ischemic tolerance. Experimental Neurology, 2006, 202, 133-138.	2.0	33
103	Protective Effect of Minocycline Treatment on Striatal Ischemia. Journal of Stroke and Cerebrovascular Diseases, 2006, 15, 101-105.	0.7	5
104	Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia. Neuroscience, 2006, 141, 27-33.	1.1	68
105	Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. European Journal of Neuroscience, 2005, 21, 187-196.	1.2	74
106	Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. European Journal of Neuroscience, 2005, 21, 989-999.	1.2	171
107	Fluoxetine and recovery of motor function after focal ischemia in rats. Brain Research, 2005, 1044, 25-32.	1.1	73
108	Increased Behavioral and Histological Variability Arising From Changes in Cerebrovascular Anatomy of the Mongolian Gerbil. Current Neurovascular Research, 2005, 2, 401-407.	0.4	26

#	Article	IF	CITATIONS
109	Dietary supplementation of omega-3 polyunsaturated fatty acids worsens forelimb motor function after intracerebral hemorrhage in rats. Experimental Neurology, 2005, 191, 119-127.	2.0	22
110	Protein-energy malnutrition impairs functional outcome in global ischemia. Experimental Neurology, 2005, 196, 308-315.	2.0	33
111	Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience, 2005, 136, 991-1001.	1.1	155
112	Protective effect of minocycline treatment on striatal ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S29-S29.	2.4	0
113	Post-ischemic diazepam does not reduce hippocampal CA1 injury and does not improve hypothermic neuroprotection after forebrain ischemia in gerbils. Brain Research, 2004, 1013, 223-229.	1.1	27
114	Efficacy of Rehabilitative Experience Declines with Time after Focal Ischemic Brain Injury. Journal of Neuroscience, 2004, 24, 1245-1254.	1.7	574
115	Can forced-use therapy be clinically applied after stroke? an exploratory randomized controlled trial11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated Archives of Physical Medicine and Rehabilitation. 2004. 85. 1417-1423.	0.5	98
116	Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Annals of Neurology, 2003, 53, 731-742.	2.8	334
117	Long-term effects of clomethiazole in a model of global ischemia. Experimental Neurology, 2003, 182, 476-482.	2.0	27
118	Inhibition of Cyclin-Dependent Kinases Improves CA1 Neuronal Survival and Behavioral Performance after Global Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 171-182.	2.4	99
119	Effect of FK-506 on Inflammation and Behavioral Outcome Following Intracerebral Hemorrhage in Rat. Experimental Neurology, 2001, 167, 341-347.	2.0	65
120	Rat middle cerebral artery occlusion: Correlations between histopathology, T2-weighted magnetic resonance imaging, and behavioral indices. Journal of Stroke and Cerebrovascular Diseases, 2001, 10, 166-177.	0.7	20
121	Environmental enrichment enhances recovery of function but exacerbates ischemic cell death. Neuroscience, 2001, 107, 585-592.	1.1	91
122	Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology, 2001, 40, 433-439.	2.0	112
123	Therapeutic implications of hypothermic and hyperthermic temperature conditions in stroke patients. Canadian Journal of Physiology and Pharmacology, 2001, 79, 254-261.	0.7	14
124	Enriched Rehabilitative Training Promotes Improved Forelimb Motor Function and Enhanced Dendritic Growth after Focal Ischemic Injury. Journal of Neuroscience, 2001, 21, 5272-5280.	1.7	534
125	Electrophysiological Properties of CA1 Neurons Protected by Postischemic Hypothermia in Gerbils. Stroke, 2001, 32, 788-795.	1.0	22
126	A serial MR study of cerebral blood flow changes and lesion development following endothelin-1-induced ischemia in rats. Magnetic Resonance in Medicine, 2001, 46, 827-830.	1.9	118

#	Article	IF	CITATIONS
127	HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Annals of Neurology, 2001, 49, 230-241.	2.8	125
128	T ₂ â€Weighted MRI Correlates with Longâ€Term Histopathology, Neurology Scores, and Skilled Motor Behavior in a Rat Stroke Model. Annals of the New York Academy of Sciences, 2001, 939, 283-296.	1.8	43
129	Prolonged but Delayed Postischemic Hypothermia: A Long-term Outcome Study in the Rat Middle Cerebral Artery Occlusion Model. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1702-1708.	2.4	210
130	Long-Term Functional End Points Following Middle Cerebral Artery Occlusion in the Rat. Pharmacology Biochemistry and Behavior, 2000, 65, 553-562.	1.3	47
131	Persistent Neuroprotection with Prolonged Postischemic Hypothermia in Adult Rats Subjected to Transient Middle Cerebral Artery Occlusion. Experimental Neurology, 2000, 163, 200-206.	2.0	140
132	Temperature Modulation (Hypothermic and Hyperthermic Conditions) and Its Influence on Histological and Behavioral Outcomes Following Cerebral Ischemia. Brain Pathology, 2000, 10, 145-152.	2.1	111
133	Diazepam-induced neuroprotection: dissociating the effects of hypothermia following global ischemia. Brain Research, 1999, 829, 1-6.	1.1	44
134	Ischemic Preconditioning in 18- to 20-Month-Old Gerbils. Stroke, 1999, 30, 1240-1246.	1.0	67
135	Competing processes of cell death and recovery of function following ischemic preconditioning. Brain Research, 1998, 794, 119-126.	1.1	33
136	The problem of assessing effective neuroprotection in experimental cerebral ischemia. Progress in Neurobiology, 1998, 54, 531-548.	2.8	253
137	Temporal profile of magnetic resonance imaging changes following forebrain ischemia in the gerbil. Neuroscience Letters, 1998, 257, 105-108.	1.0	9
138	Ischemic preconditioning: a long term survival study using behavioural and histological endpoints. Brain Research, 1997, 760, 129-136.	1.1	66
139	Postischemic hypothermia. Molecular Neurobiology, 1997, 14, 171-201.	1.9	269
140	Hypothermic Neuroprotection. Stroke, 1997, 28, 2238-2243.	1.0	59
141	Neuroprotection after Several Days of Mild, Drug-Induced Hypothermia. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 474-480.	2.4	145
142	Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil. Brain Research, 1994, 654, 265-272.	1.1	395
143	Spontaneous postischemic hyperthermia is not required for severe CA1 ischemic damage in gerbils. Brain Research, 1993, 623, 1-5.	1.1	26
144	Temperature changes associated with forebrain ischemia in the gerbil. Brain Research, 1993, 602, 264-267.	1.1	42

#	Article	IF	CITATIONS
145	Selective Lesions of Neural Pathways Following Viral Inoculation of the Olfactory Bulb. Experimental Neurology, 1993, 122, 209-222.	2.0	42
146	Impaired acquisition of the Morris water maze following global ischemic damage in the gerbil. NeuroReport, 1992, 3, 204-206.	0.6	43
147	Combined treatment with MK-801 and nicardipine reduces global ischemic damage in the gerbil Stroke, 1992, 23, 82-86.	1.0	39
148	Effects of d-amphetamine on the recovery of function following cerebral ischemic injury. Pharmacology Biochemistry and Behavior, 1992, 42, 705-710.	1.3	9
149	Chronic morphine fails to enhance the reward value of prefrontal cortex self-stimulation. Pharmacology Biochemistry and Behavior, 1992, 42, 451-455.	1.3	11
150	Cocaine enhances the reward value of medial prefrontal cortex selfstimulation. NeuroReport, 1991, 2, 805-808.	0.6	19
151	Ketamine blocks the plasticity associated with prefrontal cortex self-stimulation. Pharmacology Biochemistry and Behavior, 1990, 37, 685-688.	1.3	9
152	MK-801 reduced cerebral ischemic injury by inducing hypothermia. Brain Research, 1990, 514, 300-304.	1.1	215
153	Cerebral ischemia, locomotor activity and spatial mapping. Brain Research, 1990, 533, 78-82.	1.1	109
154	Differences in sensitivity to neuroleptic blockade: Medial forebrain bundle versus frontal cortex self-stimulation. Behavioural Brain Research, 1990, 36, 91-96.	1.2	24
155	Prefrontal cortex lesions attenuate substantia nigra self-stimulation: A reward summation analysis. Behavioural Brain Research, 1989, 32, 43-50.	1.2	3
156	Possible abuse potential of the NMDA antagonist MK-801. Behavioural Brain Research, 1989, 34, 239-246.	1.2	59
157	Regional neuroleptic microinjections indicate a role for nucleus accumbens in lateral hypothalamic self-stimulation reward. Brain Research, 1989, 477, 126-143.	1.1	83
158	An investigation of the factors affecting development of frontal cortex self-stimulation. Physiology and Behavior, 1985, 34, 89-95.	1.0	29
159	Cortical and ventral tegmental systems exert opposing influences on self-stimulation from the prefrontal cortex. Behavioural Brain Research, 1985, 17, 117-124.	1.2	35
160	Axonal branching of ventral tegmental and raphe projections to the frontal cortex in the rat. Neuroscience Letters, 1984, 48, 121-125.	1.0	20
161	Effects of peripheral and central dopamine blockade on lateral hypothalamic self-stimulation: Evidence for both reward and motor deficits. Pharmacology Biochemistry and Behavior, 1983, 18, 433-442.	1.3	111
162	Neurological reactivity during medial prefrontal cortex stimulation: Effects of self-stimulation experience. Physiology and Behavior, 1983, 31, 771-776.	1.0	21

#	Article	IF	CITATIONS
163	Plasticity of the medial prefrontal cortex: Facilitated acquisition of intracranial self-stimulation by pretraining stimulation. Physiology and Behavior, 1982, 28, 531-534.	1.0	52
164	Elimination of medial prefrontal cortex self-stimulation following transection of efferents to the sulcal cortex in the rat. Physiology and Behavior, 1982, 29, 425-431.	1.0	39
165	Fiber pathways associated with cerebellar self-stimulation in the rat: A retrograde and anterograde tracing study. Behavioural Brain Research, 1982, 6, 167-184.	1.2	13
166	A simple device for eliciting tail pinch induced behavior in the rat. Physiology and Behavior, 1981, 27, 951-952.	1.0	0
167	Behavioral methods for inferring anatomical linkage between rewarding brain stimulation sites Journal of Comparative and Physiological Psychology, 1980, 94, 227-237.	1.8	189
168	Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study. Brain Research, 1980, 185, 1-15.	1.1	251
169	Long term potentiation of lateral hypothalamic self-stimulation following parabrachial lesions in the rat. Brain Research Bulletin, 1980, 5, 637-642.	1.4	7
170	Intracranial self-stimulation in relation to the ascending noradrenergic fiber systems of the pontine tegmentum and caudal midbrain: A moveable electrode mapping study. Brain Research, 1979, 177, 423-436.	1.1	118
171	BRAIN STIMULATION REWARD SITES MAPPED IN RELATION TO THE ASCENDING CATECHOLAMINE SYSTEMS. , 1979, , 1741-1743.		1
172	Dorsal noradrenergic bundle lesions fail to disrupt self-stimulation from the region of locus coeruleus. Brain Research, 1977, 133, 37-44.	1.1	71