Jack Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284342/publications.pdf

Version: 2024-02-01

		147726	175177
54	4,066 citations	31	52
papers	citations	h-index	g-index
55	55	55	3784
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomic evidence of an ancient inland temperate rainforest in the Pacific Northwest of North America. Molecular Ecology, 2022, , .	2.0	4
2	The role of multiple Pleistocene refugia in promoting diversification in the Pacific Northwest. Molecular Ecology, 2022, 31, 4402-4416.	2.0	4
3	Genomic resolution of cryptic species diversity in chipmunks. Evolution; International Journal of Organic Evolution, 2022, 76, 2004-2019.	1.1	2
4	Diversification, Introgression, and Rampant Cytonuclear Discordance in Rocky Mountains Chipmunks (Sciuridae: <i>Tamias (i). Systematic Biology, 2021, 70, 908-921.</i>	2.7	20
5	GENETIC STRUCTURE NOT DETECTED IN NORTHERN IDAHO AND NORTHEAST WASHINGTON WESTERN TOAD (ANAXYRUS BOREAS) POPULATIONS. , 2021, 102, .		2
6	Comparative phylogeography of two Northern Rocky Mountain endemics: the widespread Anguispira kochi occidentalis and the narrow-range Anguispira nimapuna (Gastropoda: Discidae). Biological Journal of the Linnean Society, 2021, 133, 817-834.	0.7	2
7	No evidence for phylosymbiosis in western chipmunk species. FEMS Microbiology Ecology, 2020, 96, .	1.3	22
8	Carnivore Contact: A Species Fracture Zone Delineated Amongst Genetically Structured North American Marten Populations (Martes americana and Martes caurina). Frontiers in Genetics, 2020, 11, 735.	1.1	8
9	Integrating life history traits into predictive phylogeography. Molecular Ecology, 2019, 28, 2062-2073.	2.0	11
10	Complex interplay of ancient vicariance and recent patterns of geographical speciation in north-western North American temperate rainforests explains the phylogeny of jumping slugs (Hemphillia spp.). Biological Journal of the Linnean Society, 2019, 127, 876-889.	0.7	10
11	Combining allele frequency and treeâ€based approaches improves phylogeographic inference from natural history collections. Molecular Ecology, 2018, 27, 1012-1024.	2.0	9
12	Predicting plant conservation priorities on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13027-13032.	3.3	92
13	Testing for the presence of cryptic diversity in tail-dropper slugs (Prophysaon) using molecular data. Biological Journal of the Linnean Society, 2018, 124, 518-532.	0.7	10
14	Demographic model selection using random forests and the site frequency spectrum. Molecular Ecology, 2017, 26, 4562-4573.	2.0	49
15	Comparative Phylogenomic Assessment of Mitochondrial Introgression among Several Species of Chipmunks (TAMIAS). Genome Biology and Evolution, 2016, 9, evw254.	1.1	12
16	Identifying cryptic diversity with predictive phylogeography. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161529.	1.2	45
17	Genetic Structure across Broad Spatial and Temporal Scales: Rocky Mountain Tailed Frogs (Ascaphus) Tj $$ ETQq 1 1	0,784314 1.0	4 rgBT /Overlo
18	Model selection as a tool for phylogeographic inference: an example from the willow <i><scp>S</scp>alix melanopsis</i> < Molecular Ecology, 2013, 22, 4014-4028.	2.0	58

#	Article	IF	CITATIONS
19	Inferring the Evolutionary History of IncP-1 Plasmids Despite Incongruence among Backbone Gene Trees. Molecular Biology and Evolution, 2013, 30, 154-166.	3.5	63
20	Phylogeny Estimation of the Radiation of Western North American Chipmunks (Tamias) in the Face of Introgression Using Reproductive Protein Genes. Systematic Biology, 2012, 61, 44.	2.7	55
21	Species limits and integrated taxonomy of the Idaho ground squirrel (<i>Urocitellus brunneus</i>): genetic and ecological differentiation. Journal of Mammalogy, 2012, 93, 589-604.	0.6	13
22	Approximating Model Probabilities in Bayesian Information Criterion and Decision-Theoretic Approaches to Model Selection in Phylogenetics. Molecular Biology and Evolution, 2011, 28, 343-349.	3.5	8
23	Introgression at differentially aged hybrid zones in red-tailed chipmunks. Genetica, 2010, 138, 869-883.	0.5	15
24	Effects of parameter estimation on maximum-likelihood bootstrap analysis. Molecular Phylogenetics and Evolution, 2010, 56, 642-648.	1,2	2
25	Assessment of Substitution Model Adequacy Using Frequentist and Bayesian Methods. Molecular Biology and Evolution, 2010, 27, 2790-2803.	3.5	45
26	Examination of nuclear loci across a zone of mitochondrial introgression between Tamias ruficaudus and T. amoenus. Journal of Mammalogy, 2010, 91, 1389-1400.	0.6	14
27	Assessment of gene flow across a hybrid zone in redâ€ŧailed chipmunks (<i>Tamias ruficaudus</i>). Molecular Ecology, 2009, 18, 3097-3109.	2.0	42
28	Ancient hybridization and mitochondrial capture between two species of chipmunks. Molecular Ecology, 2008, 17, 1313-1327.	2.0	162
29	Does Choice in Model Selection Affect Maximum Likelihood Analysis?. Systematic Biology, 2008, 57, 76-85.	2.7	108
30	The complete nuclear estrogen receptor family in the rainbow trout: Discovery of the novel ER $\hat{1}\pm2$ and both ER $\hat{1}^2$ isoforms. Gene, 2007, 392, 164-173.	1.0	149
31	A multi-compartmented glacial refugium in the northern Rocky Mountains: Evidence from the phylogeography of Cardamine constancei (Brassicaceae). Conservation Genetics, 2006, 6, 895-904.	0.8	48
32	ALLOZYME AND MITOCHONDRIAL DNA VARIATION IN THE TAILED FROG (ANURA: ASCAPHUS): THE INFLUENCE OF GEOGRAPHY AND GENE FLOW. Herpetologica, 2006, 62, 235-258.	0.2	23
33	Testing hypotheses of speciation timing in Dicamptodon copei and Dicamptodon aterrimus (Caudata:) Tj ETQq1 1	0.78431 1.2	4 rgBT /Ove
34	INVESTIGATING THE EVOLUTIONARY HISTORY OF THE PACIFIC NORTHWEST MESIC FOREST ECOSYSTEM: HYPOTHESIS TESTING WITHIN A COMPARATIVE PHYLOGEOGRAPHIC FRAMEWORK. Evolution; International Journal of Organic Evolution, 2005, 59, 1639-1652.	1.1	183
35	Accounting for Uncertainty in the Tree Topology Has Little Effect on the Decision-Theoretic Approach to Model Selection in Phylogeny Estimation. Molecular Biology and Evolution, 2005, 22, 691-703.	3.5	68
36	INVESTIGATING THE EVOLUTIONARY HISTORY OF THE PACIFIC NORTHWEST MESIC FOREST ECOSYSTEM: HYPOTHESIS TESTING WITHIN A COMPARATIVE PHYLOGEOGRAPHIC FRAMEWORK. Evolution; International Journal of Organic Evolution, 2005, 59, 1639.	1.1	170

#	Article	IF	CITATIONS
37	Evaluating the Performance of a Successive-Approximations Approach to Parameter Optimization in Maximum-Likelihood Phylogeny Estimation. Molecular Biology and Evolution, 2005, 22, 1386-1392.	3.5	115
38	Maximum-Likelihood Methods for Phylogeny Estimation. Methods in Enzymology, 2005, 395, 757-779.	0.4	22
39	Model Selection in Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 445-466.	3.8	349
40	Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: hypothesis testing within a comparative phylogeographic framework. Evolution; International Journal of Organic Evolution, 2005, 59, 1639-52.	1.1	36
41	Testing Nested Phylogenetic and Phylogeographic Hypotheses in the Plethodon vandykei Species Group. Systematic Biology, 2004, 53, 781-792.	2.7	85
42	Extensive mtDNA variation within the yellow-pine chipmunk, Tamias amoenus (Rodentia: Sciuridae), and phylogeographic inferences for northwest North America. Molecular Phylogenetics and Evolution, 2003, 26, 389-408.	1.2	62
43	PHYLOGEOGRAPHY AND INTROGRESSIVE HYBRIDIZATION: CHIPMUNKS (GENUS TAMIAS) IN THE NORTHERN ROCKY MOUNTAINS. Evolution; International Journal of Organic Evolution, 2003, 57, 1900-1916.	1.1	76
44	Performance-Based Selection of Likelihood Models for Phylogeny Estimation. Systematic Biology, 2003, 52, 674-683.	2.7	386
45	Phylogeography of the red-tailed chipmunk (Tamias ruficaudus), a northern Rocky Mountain endemic. Molecular Ecology, 2001, 10, 2683-2695.	2.0	57
46	PHYLOGEOGRAPHY OF THE TAILED FROG (ASCAPHUS TRUEI): IMPLICATIONS FOR THE BIOGEOGRAPHY OF THE PACIFIC NORTHWEST. Evolution; International Journal of Organic Evolution, 2001, 55, 147-160.	1.1	140
47	Should We Use Model-Based Methods for Phylogenetic Inference When We Know That Assumptions About Among-Site Rate Variation and Nucleotide Substitution Pattern Are Violated?. Systematic Biology, 2001, 50, 723-729.	2.7	170
48	Phylogeography of Peromyscus furvus (Rodentia; Muridae) based on cytochrome b sequence data. Molecular Ecology, 2000, 9, 2129-2135.	2.0	34
49	Comparative Phylogeography of Mesoamerican Highland Rodents: Concerted versus Independent Response to Past Climatic Fluctuations. American Naturalist, 2000, 155, 755-768.	1.0	180
50	Phylogeography and Molecular Systematics of the Peromyscus Aztecus Species Group (Rodentia:) Tj ETQq0 0 0 rg	gBT /Overl 2.7	ock 10 Tf 50
51	Are Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics. Journal of Mammalian Evolution, 1997, 4, 77-86.	1.0	266
52	Evolution of the Mitochondrial Cytochrome Oxidase II Gene in Collembola. Journal of Molecular Evolution, 1997, 44, 145-158.	0.8	177
53	The effect of topology on estimates of among-site rate variation. Journal of Molecular Evolution, 1996, 42, 308-312.	0.8	87
54	Genomic Resources for the North American Water Vole (Microtus richardsoni) and the Montane Vole (Microtus montanus). GigaByte, 0, 2021, 1-13.	0.0	1