Karen E Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	2.8	21
2	Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. Npj Genomic Medicine, 2022, 7, 8.	3.8	23
3	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	3.9	15
4	Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circulation Research, 2022, 130, 166-180.	4.5	15
5	Cenome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	12.4	38
6	The Interaction between <scp> <i>HLAâ€DRB1</i> </scp> and Smoking in Parkinson's Disease Revisited. Movement Disorders, 2022, 37, 1929-1937.	3.9	4
7	The Effect of <scp> <i>SMN</i> </scp> Gene Dosage on <scp>ALS</scp> Risk and Disease Severity. Annals of Neurology, 2021, 89, 686-697.	5.3	10
8	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	8.8	49
9	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223
10	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
11	UK case control study of smoking and risk of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 222-227.	1.7	10
12	<i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.	3.3	33
13	Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies. NAR Genomics and Bioinformatics, 2020, 2, Iqaa105.	3.2	13
14	C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathologica Communications, 2019, 7, 115.	5.2	75
15	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€5pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
16	Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 229-234.	1.7	18
17	Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cell Reports, 2019, 26, 2298-2306.e5.	6.4	57
18	Developing a web-based patient decision aid for gastrostomy in motor neuron disease: a study protocol. BMJ Open, 2019, 9, e032364.	1.9	4

KAREN E MORRISON

#	Article	IF	CITATIONS
19	Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Science Translational Medicine, 2019, 11, .	12.4	37
20	Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nature Neuroscience, 2019, 22, 1966-1974.	14.8	101
21	Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiology of Aging, 2019, 74, 234.e9-234.e15.	3.1	26
22	Younger age of onset in familial amyotrophic lateral sclerosis is a result of pathogenic gene variants, rather than ascertainment bias. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 268-271.	1.9	38
23	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
24	Reconsidering the causality of TIA1 mutations in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 1-3.	1.7	22
25	ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiology of Aging, 2018, 71, 266.e1-266.e10.	3.1	59
26	Safety and efficacy of ozanezumab in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2017, 16, 208-216.	10.2	62
27	C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.1-281.	1.9	33
28	A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain, 2017, 140, 1611-1618.	7.6	71
29	Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	129
30	Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Research, 2017, 27, 1895-1903.	5.5	277
31	A multicentre evaluation of oropharyngeal secretion management practices in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 1-9.	1.7	20
32	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.7	22
33	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
34	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	21.4	218
35	CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nature Communications, 2016, 7, 11253.	12.8	174
36	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	9.0	57

KAREN E MORRISON

#	Article	IF	CITATIONS
37	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77
38	The Effects of Two Polymorphisms on p21cip1 Function and Their Association with Alzheimer's Disease in a Population of European Descent. PLoS ONE, 2015, 10, e0114050.	2.5	16
39	Systematic review and meta-analysis of hydrocarbon exposure and the risk of Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 243-248.	2.2	11
40	The role of <i>TREM2</i> R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's and Dementia, 2015, 11, 1407-1416.	0.8	152
41	The CHCHD10 P34S variant is not associated with ALS in a UK cohort of familial and sporadic patients. Neurobiology of Aging, 2015, 36, 2908.e17-2908.e18.	3.1	19
42	Our panel of experts highlight the most important research articles across the spectrum of topics relevant to the field of neurodegenerative disease management. Neurodegenerative Disease Management, 2015, 5, 279-281.	2.2	0
43	An Evaluation of a SVA Retrotransposon in the FUS Promoter as a Transcriptional Regulator and Its Association to ALS. PLoS ONE, 2014, 9, e90833.	2.5	32
44	Safety, Pharmacokinetic, and Functional Effects of the Nogo-A Monoclonal Antibody in Amyotrophic Lateral Sclerosis: A Randomized, First-In-Human Clinical Trial. PLoS ONE, 2014, 9, e97803.	2.5	45
45	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	8.1	308
46	<scp><i>C9orf72</i></scp> and <scp><i>UNC13A</i></scp> are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genomeâ€wide metaâ€analysis. Annals of Neurology, 2014, 76, 120-133.	5.3	91
47	The C9ORF72 expansion mutation is a common cause of ALS+/â^`FTD in Europe and has a single founder. European Journal of Human Genetics, 2013, 21, 102-108.	2.8	201
48	Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	10.2	1,039
49	Therapies in amyotrophic lateral sclerosis–beyond riluzole. Current Opinion in Pharmacology, 2002, 2, 302-309.	3.5	26