Chan Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Frontiers in Immunology, 2018, 9, 3083.	2.2	613
3	The Nedd8-Activating Enzyme Inhibitor MLN4924 Induces Autophagy and Apoptosis to Suppress Liver Cancer Cell Growth. Cancer Research, 2012, 72, 3360-3371.	0.4	204
4	Autophagy Benefits the Replication of Newcastle Disease Virus in Chicken Cells and Tissues. Journal of Virology, 2014, 88, 525-537.	1.5	102
5	OmpA is a virulence factor of Riemerella anatipestifer. Veterinary Microbiology, 2011, 150, 278-283.	0.8	98
6	elF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death and Disease, 2019, 10, 891.	2.7	89
7	Roles of LncRNAs in Viral Infections. Frontiers in Cellular and Infection Microbiology, 2017, 7, 205.	1.8	88
8	Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity <i>in Vivo</i> . ACS Nano, 2016, 10, 2203-2213.	7.3	87
9	Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathogens, 2021, 17, e1008690.	2.1	83
10	Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Archives of Virology, 2012, 157, 1011-1018.	0.9	77
11	Chicken STING Mediates Activation of the IFN Gene Independently of the RIG-I Gene. Journal of Immunology, 2015, 195, 3922-3936.	0.4	73
12	Newcastle Disease Virus V Protein Degrades Mitochondrial Antiviral Signaling Protein To Inhibit Host Type I Interferon Production via E3 Ubiquitin Ligase RNF5. Journal of Virology, 2019, 93, .	1.5	73
13	Phosphorylation Controls the Nuclear-Cytoplasmic Shuttling of Influenza A Virus Nucleoprotein. Journal of Virology, 2015, 89, 5822-5834.	1.5	66
14	Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks. Journal of Microbiological Methods, 2011, 87, 64-69.	0.7	62
15	Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Molecular Immunology, 2013, 53, 321-327.	1.0	60
16	Characterization of biofilm formation by Riemerella anatipestifer. Veterinary Microbiology, 2010, 144, 429-436.	0.8	58
17	Vibrio parahaemolyticus enolase is an adhesion-related factor that binds plasminogen and functions as a protective antigen. Applied Microbiology and Biotechnology, 2014, 98, 4937-4948.	1.7	55
18	Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli. Frontiers in Microbiology, 2016, 7, 1387.	1.5	55

#	Article	lF	CITATIONS
19	Activation of the PKR/eIF2α signaling cascade inhibits replication of Newcastle disease virus. Virology Journal, 2014, 11, 62.	1.4	54
20	IRF7 Is Involved in Both STING and MAVS Mediating IFN-Î ² Signaling in IRF3-Lacking Chickens. Journal of Immunology, 2019, 203, 1930-1942.	0.4	52
21	Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells. Autophagy, 2022, 18, 1503-1521.	4.3	52
22	The Mycoplasma gallisepticum α-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. Microbial Pathogenesis, 2011, 51, 285-290.	1.3	48
23	Mycoplasma synoviaeenolase is a plasminogen/fibronectin binding protein. BMC Veterinary Research, 2014, 10, 223.	0.7	46
24	Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS ONE, 2016, 11, e0148560.	1.1	45
25	Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Scientific Reports, 2016, 6, 24721.	1.6	45
26	Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Archives of Virology, 2015, 160, 1621-1628.	0.9	43
27	Newcastle Disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E. PLoS Pathogens, 2020, 16, e1008610.	2.1	43
28	Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology, 2019, 528, 118-136.	1.1	42
29	Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Veterinary Microbiology, 2012, 157, 428-438.	0.8	41
30	The luxS gene functions in the pathogenesis of avian pathogenic Escherichia coli. Microbial Pathogenesis, 2013, 55, 21-27.	1.3	41
31	Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation. FASEB Journal, 2017, 31, 1482-1493.	0.2	41
32	Newcastle disease virus induces apoptosis in cisplatin-resistant human lung adenocarcinoma A549 cells in vitro and in vivo. Cancer Letters, 2012, 317, 56-64.	3.2	40
33	Newcastle disease virus infection triggers HMGB1 release to promote the inflammatory response. Virology, 2018, 525, 19-31.	1.1	40
34	Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells. IScience, 2021, 24, 102837.	1.9	40
35	Development and Evaluation of a Trivalent Riemerella anatipestifer-Inactivated Vaccine. Vaccine Journal, 2013, 20, 691-697.	3.2	39
36	Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway. Archives of Virology, 2014, 159, 2937-2948.	0.9	39

#	Article	IF	CITATIONS
37	Evolution of Newcastle Disease Virus Quasispecies Diversity and Enhanced Virulence after Passage through Chicken Air Sacs. Journal of Virology, 2016, 90, 2052-2063.	1.5	39
38	DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Frontiers in Microbiology, 2014, 5, 588.	1.5	37
39	Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. Archives of Virology, 2014, 159, 905-914.	0.9	37
40	ldentification of the Genes Involved in Riemerella anatipestifer Biofilm Formation by Random Transposon Mutagenesis. PLoS ONE, 2012, 7, e39805.	1.1	37
41	Whole-Genome Sequence Analysis and Genome-Wide Virulence Gene Identification of Riemerella anatipestifer Strain Yb2. Applied and Environmental Microbiology, 2015, 81, 5093-5102.	1.4	35
42	RIP1 is a central signaling protein in regulation of TNF-α/TRAIL mediated apoptosis and necroptosis during Newcastle disease virus infection. Oncotarget, 2017, 8, 43201-43217.	0.8	35
43	Metabolomic Analysis of Influenza A Virus A/WSN/1933 (H1N1) Infected A549 Cells during First Cycle of Viral Replication. Viruses, 2019, 11, 1007.	1.5	35
44	Experimental infection of duck origin virulent Newcastle disease virus strain in ducks. BMC Veterinary Research, 2014, 10, 164.	0.7	34
45	Muscovy duck retinoic acid-induced gene I (MdRIG-I) functions in innate immunity against H9N2 avian influenza viruses (AIV) infections. Veterinary Immunology and Immunopathology, 2015, 163, 183-193.	0.5	34
46	Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken. Vaccine, 2016, 34, 380-386.	1.7	34
47	Chicken DNA virus sensor DDX41 activates IFN-β signaling pathway dependent on STING. Developmental and Comparative Immunology, 2017, 76, 334-342.	1.0	33
48	Oxidative Stress in Poultry: Lessons from the Viral Infections. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	1.9	33
49	Identification of biofilm formation by Mycoplasma gallisepticum. Veterinary Microbiology, 2012, 161, 96-103.	0.8	31
50	The waaL gene is involved in lipopolysaccharide synthesis and plays a role on the bacterial pathogenesis of avian pathogenic Escherichia coli. Veterinary Microbiology, 2014, 172, 486-491.	0.8	31
51	Coronavirus Infection and Cholesterol Metabolism. Frontiers in Immunology, 2022, 13, 791267.	2.2	31
52	Development of an Allele-Specific PCR Assay for Simultaneous Sero-Typing of Avian Pathogenic Escherichia coli Predominant O1, O2, O18 and O78 Strains. PLoS ONE, 2014, 9, e96904.	1.1	30
53	Whole genome sequencing and biological characterization of Duck/JS/10, a new lentogenic class I Newcastle disease virus. Archives of Virology, 2012, 157, 869-880.	0.9	28
54	ldentification and immunological characteristics of chaperonin GroEL in Riemerella anatipestifer. Applied Microbiology and Biotechnology, 2012, 93, 1197-1205.	1.7	28

#	Article	IF	CITATIONS
55	Microarray-Based Identification of Differentially Expressed Genes in Intracellular Brucella abortus within RAW264.7 Cells. PLoS ONE, 2013, 8, e67014.	1.1	28
56	The siderophore-interacting protein is involved in iron acquisition and virulence of Riemerella anatipestifer strain CH3. Veterinary Microbiology, 2014, 168, 395-402.	0.8	28
57	Robust Lys63-Linked Ubiquitination of RIC-I Promotes Cytokine Eruption in Early Influenza B Virus Infection. Journal of Virology, 2016, 90, 6263-6275.	1.5	28
58	Isolation, phylogenetic group, drug resistance, biofilm formation, and adherence genes of Escherichia coli from poultry in central China. Poultry Science, 2016, 95, 2895-2901.	1.5	28
59	Supplementation of Vitamin E Protects Chickens from Newcastle Disease Virus-Mediated Exacerbation of Intestinal Oxidative Stress and Tissue Damage. Cellular Physiology and Biochemistry, 2018, 47, 1655-1666.	1.1	28
60	Genetic characterization of Duck Hepatitis A Viruses isolated in China. Virus Research, 2013, 178, 211-216.	1.1	27
61	Molecular characterization of a novel reovirus isolated from Pekin ducklings in China. Archives of Virology, 2015, 160, 365-369.	0.9	27
62	Autophagy in Negative-Strand RNA Virus Infection. Frontiers in Microbiology, 2018, 9, 206.	1.5	27
63	Crystal Structure and Identification of Two Key Amino Acids Involved in Al-2 Production and Biofilm Formation in Streptococcus suis LuxS. PLoS ONE, 2015, 10, e0138826.	1.1	27
64	Deletion of luxS further attenuates the virulence of the avian pathogenic Escherichia coli aroA mutant. Microbial Pathogenesis, 2015, 88, 39-47.	1.3	26
65	Development of a reverse genetics system based on RNA polymerase II for Newcastle disease virus genotype VII. Virus Genes, 2015, 50, 152-155.	0.7	26
66	Implementation of different feed withdrawal times and water temperatures in managing turkeys during heat stress. Poultry Science, 2018, 97, 3076-3084.	1.5	26
67	Exosomes Carry microRNAs into Neighboring Cells to Promote Diffusive Infection of Newcastle Disease Virus. Viruses, 2019, 11, 527.	1.5	26
68	Targeting autophagy to enhance oncolytic virus-based cancer therapy. Expert Opinion on Biological Therapy, 2013, 13, 863-873.	1.4	25
69	The AS87_04050 Gene Is Involved in Bacterial Lipopolysaccharide Biosynthesis and Pathogenicity of Riemerella anatipestifer. PLoS ONE, 2014, 9, e109962.	1.1	25
70	Newcastle disease virus-like particles induce DC maturation through TLR4/NF-κB pathway and facilitate DC migration by CCR7-CCL19/CCL21 axis. Veterinary Microbiology, 2017, 203, 158-166.	0.8	25
71	Deep Sequencing-Based Transcriptome Profiling Reveals Avian Interferon-Stimulated Genes and Provides Comprehensive Insight into Newcastle Disease Virus-Induced Host Responses. Viruses, 2018, 10, 162.	1.5	25
72	Sustainable floor type for managing turkey production in a hot climate. Poultry Science, 2018, 97, 3884-3890.	1.5	25

#	Article	IF	CITATIONS
73	Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings. Virus Research, 2015, 203, 77-83.	1.1	24
74	Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity. Archives of Virology, 2018, 163, 1407-1417.	0.9	24
75	Targeting STAT3 enhances NDVâ€induced immunogenic cell death in prostate cancer cells. Journal of Cellular and Molecular Medicine, 2020, 24, 4286-4297.	1.6	24
76	Regulation of de novo translation of host cells by manipulation of PERK/PKR and GADD34-PP1 activity during Newcastle disease virus infection. Journal of General Virology, 2016, 97, 867-879.	1.3	24
77	Newcastle disease virus induces G0/G1 cell cycle arrest in asynchronously growing cells. Virology, 2018, 520, 67-74.	1.1	23
78	Recombinant oncolytic Newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells. BMC Cancer, 2018, 18, 746.	1.1	23
79	Newcastle disease virus RNA-induced IL-1β expression via the NLRP3/caspase-1 inflammasome. Veterinary Research, 2020, 51, 53.	1.1	23
80	Molecular cloning and functional characterization of a novel isoform of chicken myeloid differentiation factor 88 (MyD88). Developmental and Comparative Immunology, 2008, 32, 1522-1530.	1.0	22
81	Inactivation of the ABC transporter ATPase gene in Brucella abortus strain 2308 attenuated the virulence of the bacteria. Veterinary Microbiology, 2013, 164, 322-329.	0.8	22
82	Newcastle disease virus infection induces activation of the NLRP3 inflammasome. Virology, 2016, 496, 90-96.	1.1	22
83	Chicken TBK1 interacts with STING and is involved in IFN-β signaling regulation. Developmental and Comparative Immunology, 2017, 77, 200-209.	1.0	22
84	Splicing together different regions of a gene by modified polymerase chain reaction-based site-directed mutagenesis. Analytical Biochemistry, 2008, 373, 398-400.	1.1	21
85	Infectious bronchitis virus poly-epitope-based vaccine protects chickens from acute infection. Vaccine, 2016, 34, 5209-5216.	1.7	21
86	Phylogenetic, antigenic and biological characterization of pigeon paramyxovirus type 1 circulating in China. Virology Journal, 2017, 14, 186.	1.4	21
87	Genetic diversity of the genotype VII Newcastle disease virus: identification of a novel VIIj sub-genotype. Virus Genes, 2017, 53, 63-70.	0.7	20
88	Influence of swimming time in alleviating the deleterious effects of hot summer on growing Muscovy duck performance. Poultry Science, 2017, 96, 3912-3919.	1.5	20
89	Characterization of Mycoplasma gallisepticum pyruvate dehydrogenase alpha and beta subunits and their roles in cytoadherence. PLoS ONE, 2018, 13, e0208745.	1.1	20
90	ATM-mediated DNA double-strand break response facilitated oncolytic Newcastle disease virus replication and promoted syncytium formation in tumor cells. PLoS Pathogens, 2020, 16, e1008514.	2.1	20

Chan Ding

#	Article	IF	CITATIONS
91	Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells. American Journal of Cancer Research, 2018, 8, 1514-1527.	1.4	20
92	Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion. Frontiers in Cellular and Infection Microbiology, 2017, 7, 422.	1.8	19
93	Pathobiology of Avian avulavirus 1: special focus on waterfowl. Veterinary Research, 2018, 49, 94.	1.1	19
94	Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks. Transboundary and Emerging Diseases, 2018, 65, 1851-1862.	1.3	19
95	Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens. Viruses, 2018, 10, 173.	1.5	19
96	In Vitro and In Vivo Metabolomic Profiling after Infection with Virulent Newcastle Disease Virus. Viruses, 2019, 11, 962.	1.5	19
97	Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells. Oncotarget, 2016, 7, 86117-86133.	0.8	19
98	Enzymatic and biological characteristics of enolase in Brucella abortus A19. Molecular Biology Reports, 2012, 39, 2705-2711.	1.0	18
99	Construction of a cell-surface display system based on the N-terminal domain of ice nucleation protein and its application in identification of <i>mycoplasma</i> adhesion proteins. Journal of Applied Microbiology, 2015, 119, 236-244.	1.4	18
100	Development of Loop-Mediated Isothermal Amplification (LAMP) Targeting the GroEL Gene for Rapid Detection of Riemerella anatipestifer. Avian Diseases, 2011, 55, 379-383.	0.4	17
101	Virulent and attenuated strains of duck hepatitis A virus elicit discordant innate immune responses in vivo. Journal of General Virology, 2014, 95, 2716-2726.	1.3	17
102	Riemerella anatipestifer lacks luxS, but can uptake exogenous autoinducer-2 to regulate biofilm formation. Research in Microbiology, 2015, 166, 486-493.	1.0	17
103	The M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of Riemerella anatipestifer. Veterinary Microbiology, 2015, 177, 193-200.	0.8	17
104	Phylodynamic analyses of class I Newcastle disease virus isolated in China. Transboundary and Emerging Diseases, 2021, 68, 1294-1304.	1.3	17
105	Characterization of the immunogenicity and pathogenicity of malate dehydrogenase in Brucella abortus. World Journal of Microbiology and Biotechnology, 2014, 30, 2063-2070.	1.7	16
106	Syncytia generated by hemagglutinin-neuraminidase and fusion proteins of virulent Newcastle disease virus induce complete autophagy by activating AMPK-mTORC1-ULK1 signaling>. Veterinary Microbiology, 2019, 230, 283-290.	0.8	16
107	Goose MAVS functions in RIG-I-mediated IFN-β signaling activation. Developmental and Comparative Immunology, 2019, 93, 58-65.	1.0	16
108	Development of Colloidal Gold Immunochromatographic Strips for Detection of Riemerella anatipestifer. PLoS ONE, 2015, 10, e0122952.	1.1	16

Chan Ding

#	Article	IF	CITATIONS
109	Growth Performance, Intestinal Histomorphology, Blood Hematology and Serum Metabolites of Broilers Chickens Fed Diet Supplemented with Graded Levels of Acetic Acid. International Journal of Pharmacology, 2016, 12, 874-883.	0.1	16
110	Rapid detection of duck hepatitis virus type-1 by reverse transcription loop-mediated isothermal amplification. Journal of Virological Methods, 2012, 182, 76-81.	1.0	15
111	Interaction of infectious bursal disease virus with the immune system of poultry. World's Poultry Science Journal, 2016, 72, 805-820.	1.4	15
112	Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein. Archives of Virology, 2016, 161, 2103-2116.	0.9	15
113	Development of Strand-Specific Real-Time RT-PCR to Distinguish Viral RNAs during Newcastle Disease Virus Infection. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	14
114	The LXR ligand GW3965 inhibits Newcastle disease virus infection by affecting cholesterol homeostasis. Archives of Virology, 2016, 161, 2491-2501.	0.9	14
115	Effect of feed form and dietary protein level on growth performance and carcass characteristics of growing geese. Poultry Science, 2019, 98, 761-770.	1.5	14
116	Insights into Genomic Epidemiology, Evolution, and Transmission Dynamics of Genotype VII of Class II Newcastle Disease Virus in China. Pathogens, 2020, 9, 837.	1.2	14
117	Bile acids promote the caveolae-associated entry of swine acute diarrhea syndrome coronavirus in porcine intestinal enteroids. PLoS Pathogens, 2022, 18, e1010620.	2.1	14
118	Infectivity and Pathogenicity of Newcastle Disease Virus Strains of Different Avian Origin and Different Virulence for Mallard Ducklings. Avian Diseases, 2013, 57, 8-14.	0.4	13
119	Kinetic analysis of RNA editing of Newcastle disease virus P gene in the early period of infection. Acta Virologica, 2016, 60, 71-77.	0.3	13
120	A Recombinant La Sota Vaccine Strain Expressing Multiple Epitopes of Infectious Bronchitis Virus (IBV) Protects Specific Pathogen-Free (SPF) Chickens against IBV and NDV Challenges. Vaccines, 2019, 7, 170.	2.1	13
121	Caspase-Dependent Cleavage of DDX21 Suppresses Host Innate Immunity. MBio, 2021, 12, e0100521.	1.8	13
122	Cloning, expression and functional analysis of the duck Toll-like receptor 5 (TLR5) gene. Journal of Veterinary Science, 2015, 16, 37.	0.5	12
123	Two myeloid differentiation factor 88 (MyD88) isoforms identified in ducks. Developmental and Comparative Immunology, 2015, 52, 144-154.	1.0	12
124	NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation. Virology, 2018, 518, 126-135.	1.1	12
125	Rescue of virulent class I Newcastle disease virus variant 9a5b-D5C1. Virology Journal, 2012, 9, 120.	1.4	11
126	Identification of genes involved in Mycoplasma gallisepticum biofilm formation using mini-Tn4001-SGM transposon mutagenesis. Veterinary Microbiology, 2017, 198, 17-22.	0.8	11

#	Article	IF	CITATIONS
127	Targeting Autophagy for Oncolytic Immunotherapy. Biomedicines, 2017, 5, 5.	1.4	11
128	Hemagglutinin-neuraminidase and fusion proteins of virulent Newcastle disease virus cooperatively disturb fusion–fission homeostasis to enhance mitochondrial function by activating the unfolded protein response of endoplasmic reticulum and mitochondrial stress. Veterinary Research, 2019, 50, 37.	1.1	11
129	Ubiquitination on Lysine 247 of Newcastle Disease Virus Matrix Protein Enhances Viral Replication and Virulence by Driving Nuclear-Cytoplasmic Trafficking. Journal of Virology, 2022, 96, JVI0162921.	1.5	10
130	A SOE-PCR method of introducing multiple mutations into Mycoplasma gallisepticum neuraminidase. Journal of Microbiological Methods, 2013, 94, 117-120.	0.7	9
131	Development of a loop-mediated isothermal amplification targeting a gene within the pyruvate dehydrogenase complex, the <i>pdhA</i> gene, for rapid detection of <i>Mycoplasma gallisepticum</i> . Journal of Veterinary Diagnostic Investigation, 2015, 27, 260-267.	0.5	9
132	Characterization of the chaperonin GroEL in Mycoplasma gallisepticum. Archives of Microbiology, 2015, 197, 235-244.	1.0	9
133	Mast cells and innate immunity: master troupes of the avian immune system. World's Poultry Science Journal, 2017, 73, 621-632.	1.4	9
134	Phylogeny, pathogenicity and transmissibility of a genotype XII Newcastle disease virus in chicken and goose. Transboundary and Emerging Diseases, 2020, 67, 159-170.	1.3	9
135	Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses, 2020, 12, 1249.	1.5	9
136	Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. International Journal of Molecular Sciences, 2020, 21, 3689.	1.8	9
137	Newcastle disease virus induces testicular damage and disrupts steroidogenesis in specific pathogen free roosters. Veterinary Research, 2020, 51, 84.	1.1	9
138	Characterization and functional analysis of chicken APOBEC4. Developmental and Comparative Immunology, 2020, 106, 103631.	1.0	9
139	Evolutionary Dynamics and Age-Dependent Pathogenesis of Sub-Genotype VI.2.1.1.2.2 PPMV-1 in Pigeons. Viruses, 2020, 12, 433.	1.5	9
140	Characterization of triosephosphate isomerase from <i>Mycoplasma gallisepticum</i> . FEMS Microbiology Letters, 2015, 362, fnv140.	0.7	7
141	Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses, 2020, 12, 1305.	1.5	7
142	Dendritic cell harmonised immunity to poultry pathogens; a review. World's Poultry Science Journal, 2017, 73, 581-590.	1.4	6
143	Development of a Recombinant Thermostable Newcastle Disease Virus (NDV) Vaccine Express Infectious Bronchitis Virus (IBV) Multiple Epitopes for Protecting against IBV and NDV Challenges. Vaccines, 2020, 8, 564.	2.1	6
144	The Multi-Faceted Role of Autophagy During Animal Virus Infection. Frontiers in Cellular and Infection Microbiology, 2022, 12, 858953.	1.8	6

#	Article	IF	CITATIONS
145	Expression and immunological characteristics of the surface-localized pyruvate kinase in Mycoplasma gallisepticum. Microbial Pathogenesis, 2015, 89, 161-168.	1.3	5
146	Newcastle Disease Virus Induced Pathologies Severely Affect the Exocrine and Endocrine Functions of the Pancreas in Chickens. Genes, 2021, 12, 495.	1.0	5
147	Comparison of the protective antigen variabilities of prevalent Newcastle disease viruses in response to homologous/heterologous genotype vaccines. Poultry Science, 2021, 100, 101267.	1.5	5
148	Non-Targeted Metabolomic Analysis of Chicken Kidneys in Response to Coronavirus IBV Infection Under Stress Induced by Dexamethasone. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
149	Brucella infection regulates peroxiredoxin-5 protein expression to facilitate intracellular survival by reducing the production of nitric oxide and reactive oxygen species. Biochemical and Biophysical Research Communications, 2019, 516, 82-88.	1.0	4
150	Characterization of pyruvate dehydrogenase complex E1 alpha and beta subunits of Mycoplasma synoviae. Microbial Pathogenesis, 2021, 155, 104851.	1.3	4
151	Construction of mini-Tn4001 transposon vector for Mycoplasma gallisepticum. Science China Life Sciences, 2010, 53, 1340-1345.	2.3	3
152	Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein. Journal of Virological Methods, 2018, 260, 88-97.	1.0	3
153	Genome-Wide Analysis of Alternative Splicing during Host-Virus Interactions in Chicken. Viruses, 2021, 13, 2409.	1.5	3
154	A Role for the Chicken Interferon-Stimulated Gene CMPK2 in the Host Response Against Virus Infection. Frontiers in Microbiology, 2022, 13, .	1.5	3
155	Selective capture of transcribed sequences in the functional gene analysis of microbial pathogens. Applied Microbiology and Biotechnology, 2014, 98, 9983-9992.	1.7	2
156	Specific Monoclonal Antibodies Recognizing the Endogenous Chicken High Mobility Group Box 1 Protein. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2017, 36, 163-168.	0.8	1
157	Chicken RNA-binding protein T-cell internal antigen-1 contributes to stress granule formation in chicken cells and tissues. Journal of Veterinary Science, 2018, 19, 3.	0.5	1
158	The deletion of an extra six nucleotides in the 5′ -untranslated region of the nucleoprotein gene of Newcastle disease virus NA-1 decreases virulence. BMC Veterinary Research, 2014, 10, 964.	0.7	0