Muhammad Salman Mubarik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/728408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports, 2021, 40, 1513-1541.	5.6	120
2	Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. Science of the Total Environment, 2018, 619-620, 517-527.	8.0	70
3	A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Physiologia Plantarum, 2021, 172, 1269-1290.	5.2	61
4	Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biology, 2022, 24, 540-558.	3.8	46
5	An Outlook on Global Regulatory Landscape for Genome-Edited Crops. International Journal of Molecular Sciences, 2021, 22, 11753.	4.1	43
6	Use of TALEs and TALEN Technology for Genetic Improvement of Plants. Plant Molecular Biology Reporter, 2017, 35, 1-19.	1.8	37
7	Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy, 2021, 11, 1825.	3.0	29
8	Genome-Wide Characterization of Glutathione Peroxidase (GPX) Gene Family in Rapeseed (Brassica) Tj ETQq0 0 2021, 10, 1481.	0 rgBT /Ov 5.1	erlock 10 Tf 1 25
9	Engineering broad-spectrum resistance to cotton leaf curl disease by CRISPR-Cas9 based multiplex editing in plants. GM Crops and Food, 2021, 12, 647-658.	3.8	21
10	Genome-wide association analysis for stripe rust resistance in spring wheat (Triticum aestivum L.) germplasm. Journal of Integrative Agriculture, 2020, 19, 2035-2043.	3.5	17
11	Deploying Genome Editing Tools for Dissecting the Biology of Nut Trees. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	16
12	Using Multiplexed CRISPR/Cas9 for Suppression of Cotton Leaf Curl Virus. International Journal of Molecular Sciences, 2021, 22, 12543.	4.1	16
13	Improving Plant Phosphorus (P) Acquisition by Phosphate-Solubilizing Bacteria. , 2017, , 513-556.		14
14	Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate. Agronomy, 2020, 10, 1190.	3.0	13
15	Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant. Ecotoxicology and Environmental Safety, 2022, 234, 113385.	6.0	13
16	The Role of Non-Enzymatic Antioxidants in Improving Abiotic Stress Tolerance in Plants. , 2019, , 129-144.		12
17	Targeted Genome Editing for Cotton Improvement. , 0, , .		8
18	Controlling Geminiviruses before Transmission: Prospects. Plants, 2020, 9, 1556.	3.5	7

#	Article	IF	CITATIONS
19	Key Applications of CRISPR/Cas for Yield and Nutritional Improvement. , 2021, , 213-230.		4
20	Disruption of Phytoene Desaturase Gene using Transient Expression of Cas9: gRNA Complex. International Journal of Agriculture and Biology, 2016, , 990-996.	0.4	4
21	CRISPR/Cas-Based Techniques in Plants. , 2021, , 37-61.		3
22	Abiotic Stress-Induced Oxidative Stress in Rice. , 2019, , 489-504.		2
23	Reforming Cotton Genes: From Elucidation of DNA Structure to Genome Editing. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 0, , .	2.1	1
24	Applications of CRISPR/Cas System in Plants. , 2022, , 285-309.		1
25	Applications of CRISPR/Cas Beyond Simple Traits in Crops. , 2021, , 231-260.		0