
James R Kastner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7284021/publications.pdf Version: 2024-02-01

IAMES P KASTNED

#	Article	IF	CITATIONS
1	Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today, 2012, 190, 122-132.	4.4	278
2	Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catalysis Today, 2012, 190, 89-97.	4.4	140
3	Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Processing Technology, 2013, 114, 118-125.	7.2	102
4	Catalytic decomposition of tar using iron supported biochar. Fuel Processing Technology, 2015, 130, 31-37.	7.2	99
5	Low Temperature Catalytic Oxidation of Hydrogen Sulfide and Methanethiol Using Wood and Coal Fly Ash. Environmental Science & Technology, 2003, 37, 2568-2574.	10.0	75
6	Effect of low temperature hydrothermal liquefaction on catalytic hydrodenitrogenation of algae biocrude and model macromolecules. Algal Research, 2016, 13, 53-68.	4.6	70
7	Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Research, 2015, 12, 377-387.	4.6	61
8	Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. Journal of Hazardous Materials, 2009, 164, 1420-1427.	12.4	59
9	Wet Scrubber Analysis of Volatile Organic Compound Removal in the Rendering Industry. Journal of the Air and Waste Management Association, 2002, 52, 459-469.	1.9	46
10	Effect of metal oxide redox state in red mud catalysts on ketonization of fast pyrolysis oil derived oxygenates. Applied Catalysis B: Environmental, 2019, 241, 430-441.	20.2	44
11	Continuous catalytic upgrading of fast pyrolysis oil using iron oxides in red mud. RSC Advances, 2015, 5, 29375-29385.	3.6	43
12	Catalytic oxidation of gaseous reduced sulfur compounds using coal fly ash. Journal of Hazardous Materials, 2002, 95, 81-90.	12.4	39
13	Catalytic Ozonation of Gaseous Reduced Sulfur Compounds Using Wood Fly Ash. Environmental Science & Technology, 2005, 39, 1835-1842.	10.0	35
14	A kinetic model of multi-step furfural hydrogenation over a Pd-TiO2 supported activated carbon catalyst. Chemical Engineering Journal, 2021, 414, 128693.	12.7	33
15	Effect of Torrefaction on Bio-oil Upgrading over HZSM-5. Part 1: Product Yield, Product Quality, and Catalyst Effectiveness for Benzene, Toluene, Ethylbenzene, and Xylene Production. Energy & Fuels, 2013, 27, 830-843.	5.1	32
16	Catalytic Ozonation of Propanal Using Wood Fly Ash and Metal Oxide Nanoparticle Impregnated Carbon. Environmental Science & Technology, 2008, 42, 556-562.	10.0	27
17	Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotechnology Letters, 2001, 23, 1663-1667.	2.2	23
18	Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis. Applied Microbiology and Biotechnology, 2003, 63, 96-100.	3.6	23

JAMES R KASTNER

#	Article	IF	CITATIONS
19	Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: Kinetics, mechanism, and effect of ozone. Chemosphere, 2010, 78, 1110-1115.	8.2	22
20	Effect of Torrefaction on Bio-oil Upgrading over HZSM-5. Part 2: Byproduct Formation and Catalyst Properties and Function. Energy & Fuels, 2013, 27, 844-856.	5.1	21
21	Catalytic ozonation of ammonia using biomass char and wood fly ash. Chemosphere, 2009, 75, 739-744.	8.2	20
22	Viability ofCandida shehatae inD-xylose fermentations with added ethanol. Biotechnology and Bioengineering, 1992, 40, 1282-1285.	3.3	19
23	Comparison of chemical wet scrubbers and biofiltration for control of volatile organic compounds using GC/MS techniques and kinetic analysis. Journal of Chemical Technology and Biotechnology, 2005, 80, 1170-1179.	3.2	19
24	Effect of pH and Temperature on the Kinetics of Odor Oxidation Using Chlorine Dioxide. Journal of the Air and Waste Management Association, 2003, 53, 1218-1224.	1.9	17
25	Continuous Upgrading of Fast Pyrolysis Oil by Simultaneous Esterification and Hydrogenation. Energy & Fuels, 2016, 30, 8357-8368.	5.1	16
26	Continuous Hydrogenation of Aqueous Furfural Using a Metal-Supported Activated Carbon Monolith. ACS Omega, 2020, 5, 7836-7849.	3.5	15
27	Coupling Red-Mud Ketonization of a Model Bio-Oil Mixture with Aqueous Phase Hydrogenation Using Activated Carbon Monoliths. Energy & Fuels, 2017, 31, 9529-9541.	5.1	11
28	Two-Stage Hydrothermal Liquefaction of Sweet Sorghum Biomass—Part 1: Production of Sugar Mixtures. Energy & Fuels, 2018, 32, 7611-7619.	5.1	11
29	Low temperature catalytic oxidation of aldehydes using wood fly ash and molecular oxygen. Applied Catalysis B: Environmental, 2007, 76, 203-217.	20.2	9
30	Two-Stage Hydrothermal Liquefaction of Sweet Sorghum Biomass—Part II: Production of Upgraded Biocrude Oil. Energy & Fuels, 2018, 32, 7620-7629.	5.1	9
31	Bi-Metal-Supported Activated Carbon Monolith Catalysts for Selective Hydrogenation of Furfural. Industrial & Engineering Chemistry Research, 2020, 59, 17748-17761.	3.7	9
32	Continuous Catalytic Esterification and Hydrogenation of a Levoglucosan/Acetic Acid Mixture for Production of Ethyl Levulinate/Acetate and Valeric Biofuels. Energy & Fuels, 2016, 30, 9480-9489.	5.1	8
33	Continuous hydroxyketone production from furfural using Pd–TiO2 supported on activated carbon. Catalysis Science and Technology, 2020, 10, 7002-7015.	4.1	8
34	Catalytic Esterification Using Solid Acid Carbon Catalysts Synthesized by Sustainable Hydrothermal and Plasma Sulfonation Techniques. Industrial & Engineering Chemistry Research, 2022, 61, 3928-3940.	3.7	6
35	Biofiltration Kinetics of a Gaseous Aldehyde Mixture Using a Synthetic Matrix. Journal of the Air and Waste Management Association, 2008, 58, 412-423.	1.9	4