Jörg Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7283221/publications.pdf

Version: 2024-02-01

78 papers 4,535 citations

94269 37 h-index 65 g-index

80 all docs

80 docs citations

80 times ranked

3650 citing authors

#	Article	IF	CITATIONS
1	Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology, 2017, 8, 682.	1.5	409
2	Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiology Reviews, 2002, 26, 285-309.	3.9	332
3	Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 114-135.	0.5	300
4	Genome of the Epsilonproteobacterial Chemolithoautotroph <i>Sulfurimonas denitrificans</i> Applied and Environmental Microbiology, 2008, 74, 1145-1156.	1.4	228
5	Complete genome sequence and analysis of Wolinella succinogenes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11690-11695.	3.3	199
6	Cytochrome c Nitrite Reductase from Wolinella succinogenes. Journal of Biological Chemistry, 2000, 275, 39608-39616.	1.6	184
7	The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1480-1490.	0.5	156
8	Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 23-38.	0.5	134
9	A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Molecular Microbiology, 2002, 35, 686-696.	1.2	130
10	Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 646-656.	0.5	105
11	Microbial Sulfite Respiration. Advances in Microbial Physiology, 2013, 62, 45-117.	1.0	95
12	The unprecedentednosgene cluster of Wolinella succinogenesen codes a novel respiratory electron transfer pathway to cytochromecnitrous oxide reductase. FEBS Letters, 2004, 569, 7-12.	1.3	92
13	Binding and Reduction of Sulfite by Cytochrome <i>c</i> Nitrite Reductase [,] . Biochemistry, 2008, 47, 2080-2086.	1.2	83
14	Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13051-13056.	3.3	77
15	Composition and function of cytochrome <i>c</i> biogenesis System II. FEBS Journal, 2011, 278, 4179-4188.	2.2	77
16	Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. FEBS Journal, 1998, 251, 418-426.	0.2	68
17	Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Molecular Microbiology, 2003, 49, 69-79.	1.2	64
18	The <i>>Wolinella succinogenes mcc</i> > gene cluster encodes an unconventional respiratory sulphite reduction system. Molecular Microbiology, 2011, 82, 1515-1530.	1.2	63

#	Article	IF	CITATIONS
19	Quinone-reactive proteins devoid of haem <i>b</i> form widespread membrane-bound electron transport modules in bacterial respiration. Biochemical Society Transactions, 2008, 36, 1011-1016.	1.6	61
20	Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Archives of Microbiology, 1998, 170, 50-58.	1.0	60
21	Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. FEBS Journal, 2002, 269, 1974-1983.	0.2	57
22	The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. FEBS Journal, 2001, 268, 5776-5782.	0.2	55
23	The octahaem MccA is a haem c–copper sulfite reductase. Nature, 2015, 520, 706-709.	13.7	55
24	The oxidative and nitrosative stress defence network of <i>Wolinella succinogenes</i> : cytochrome <i>c</i> nitrite reductase mediates the stress response to nitrite, nitric oxide, hydroxylamine and hydrogen peroxide. Environmental Microbiology, 2011, 13, 2478-2494.	1.8	54
25	A third crystal form ofWolinella succinogenesquinol:fumarate reductase reveals domain closure at the site of fumarate reduction. FEBS Journal, 2001, 268, 1820-1827.	0.2	52
26	Succinate:quinone oxidoreductases from ¡µ-proteobacteria11Dedicated to Achim Kröger on the occasion of his 65th birthday. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 84-101.	0.5	52
27	A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding. Molecular Microbiology, 2007, 64, 1049-1060.	1.2	51
28	Characterization of the NapGH quinol dehydrogenase complex involved in <i>Wolinella succinogenes</i> nitrate respiration. Molecular Microbiology, 2008, 69, 1137-1152.	1.2	50
29	The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes. Archives of Microbiology, 1999, 172, 227-232.	1.0	48
30	Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18860-18865.	3.3	47
31	The function of the periplasmic Sud protein in polysulfide respiration of Wolinella succinogenes. FEBS Journal, 1998, 253, 263-269.	0.2	44
32	Physiological function and catalytic versatility of bacterial multihaem cytochromes <i>c</i> in nitrogen and sulfur cycling. Biochemical Society Transactions, 2011, 39, 1864-1870.	1.6	44
33	Characterization of the Menaquinone Reduction Site in the Diheme Cytochrome b Membrane Anchor of Wolinella succinogenes NiFe-hydrogenase. Journal of Biological Chemistry, 2004, 279, 274-281.	1.6	43
34	Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes. Microbiology (United Kingdom), 2007, 153, 3739-3747.	0.7	43
35	Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Molecular Microbiology, 1998, 30, 639-646.	1.2	41
36	Transport of C4-Dicarboxylates inWolinella succinogenes. Journal of Bacteriology, 2000, 182, 5757-5764.	1.0	39

#	Article	IF	Citations
37	Substrate specificity of three cytochrome <i>c</i> haem lyase isoenzymes from <i>Wolinella succinogenes</i> : unconventional haem <i>c</i> binding motifs are not sufficient for haem <i>c</i>)attachment by Nrfl and CcsA1. Molecular Microbiology, 2010, 75, 122-137.	1.2	39
38	Heterologous production in Wolinella succinogenes and characterization of the quinol:fumarate reductase enzymes from Helicobacter pylori and Campylobacter jejuni. Biochemical Journal, 2006, 395, 191-201.	1.7	38
39	Thenrflgene is essential for the attachment of the active site haem group of Wolinella succinogenescy to chromec nitrite reductase. Molecular Microbiology, 2002, 43, 763-770.	1.2	37
40	Periplasmic nitrate reduction in Wolinella succinogenes: cytoplasmic NapF facilitates NapA maturation and requires the menaquinol dehydrogenase NapH for membrane attachment. Microbiology (United Kingdom), 2009, 155, 2784-2794.	0.7	36
41	Clade II nitrous oxide respiration of <i>Wolinella succinogenes</i> depends on the NosG, 1, 2, â€H electron transport module, NosB and a Rieske/cytochrome <i>bc</i> complex. Environmental Microbiology, 2017, 19, 4913-4925.	1.8	36
42	Site-directed modifications indicate differences in axial haem <i>c</i> iron ligation between the related NrfH and NapC families of multihaem <i>c</i> -type cytochromes. Biochemical Journal, 2005, 390, 689-693.	1.7	31
43	A periplasmic flavoprotein in Wolinella succinogenes that resembles the fumarate reductase of Shewanella putrefaciens. Archives of Microbiology, 1998, 169, 424-433.	1.0	30
44	Epsilonproteobacterial hydroxylamine oxidoreductase (<i>ε</i> Hao): characterization of a †missing link†in the multihaem cytochrome <i>c</i> family. Molecular Microbiology, 2017, 105, 127-138.	1.2	30
45	Modification of hemecbinding motifs in the small subunit (NrfH) of theWolinella succinogenescytochromecnitrite reductase complex. FEBS Letters, 2002, 522, 83-87.	1.3	28
46	Resolution of Key Roles for the Distal Pocket Histidine in Cytochrome $\langle i \rangle c \langle i \rangle$ Nitrite Reductases. Journal of the American Chemical Society, 2015, 137, 3059-3068.	6.6	28
47	Structure and Function of a Second Gene Cluster Encoding the Formate Dehydrogenase of Wolinella Succinogenes. FEBS Journal, 1997, 246, 646-651.	0.2	27
48	Three transcription regulators of the $\langle scp \rangle N \langle scp \rangle ss$ family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in $\langle scp \rangle \langle i \rangle W \langle i \rangle \langle scp \rangle \langle i \rangle$ olinella succinogenes $\langle i \rangle \rangle$. Environmental Microbiology, 2016, 18, 2899-2912.	1.8	26
49	A class C radical <i>S</i> àâ€adenosylmethionine methyltransferase synthesizes 8â€methylmenaquinone. Molecular Microbiology, 2017, 104, 449-462.	1.2	26
50	The single cysteine residue of the Sud protein is required for its function as a polysulfide-sulfur transferase in Wolinella succinogenes. FEBS Journal, 1999, 263, 79-84.	0.2	25
51	Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions. Advances in Microbial Physiology, 2019, 75, 137-175.	1.0	25
52	Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells. Microbiology (United Kingdom), 2014, 160, 1749-1759.	0.7	24
53	Probing Heme Propionate Involvement in Transmembrane Proton Transfer Coupled to Electron Transfer in Dihemic Quinol:Fumarate Reductase by13C-Labeling and FTIR Difference Spectroscopyâ€. Biochemistry, 2005, 44, 16718-16728.	1.2	23
54	Properties of the menaquinol oxidase (Qox) and of qox deletion mutants of Bacillus subtilis. Archives of Microbiology, 1995, 163, 432-438.	1.0	20

#	Article	IF	Citations
55	Crystallization and preliminary X-ray analysis of the membrane-bound cytochromecnitrite reductase complex (NrfHA) fromWolinella succinogenes. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 341-342.	2.5	19
56	Periplasmic methacrylate reductase activity in Wolinella succinogenes. Archives of Microbiology, 2001, 176, 310-313.	1.0	18
57	FTIR Difference Spectra ofWolinella succinogenesQuinol:Fumarate Reductase Support a Key Role of Glu C180 within the "E-Pathway Hypothesis―of Coupled Transmembrane Electron and Proton Transferâ€. Biochemistry, 2005, 44, 13949-13961.	1.2	18
58	Production of Recombinant Multiheme Cytochromes c in Wolinella succinogenes. Methods in Enzymology, 2011, 486, 429-446.	0.4	18
59	Two dedicated class C radical S-adenosylmethionine methyltransferases concertedly catalyse the synthesis of 7,8-dimethylmenaquinone. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 300-308.	0.5	17
60	Essential histidine pairs indicate conserved haem binding in epsilonproteobacterial cytochrome c haem lyases. Microbiology (United Kingdom), 2010, 156, 3773-3781.	0.7	16
61	Variants of the tetrahaem cytochrome <i>c</i> quinol dehydrogenase NrfH characterize the menaquinol-binding site, the haem <i>c</i> binding motifs and the transmembrane segment. Biochemical Journal, 2008, 414, 73-79.	1.7	13
62	Identification and characterization of IS 1302, a novel insertion element from Wolinella succinogenes belonging to the IS 3 family. Archives of Microbiology, 1998, 170, 43-49.	1.0	12
63	The Production of Ammonia by Multiheme Cytochromes c. Metal lons in Life Sciences, 2014, 14, 211-236.	2.8	12
64	ThehydEgene is essential for the formation of Wolinella succinogenes NiFe-hydrogenase. FEMS Microbiology Letters, 2003, 227, 197-202.	0.7	10
65	Sequence analysis and specificity of distinct types of menaquinone methyltransferases indicate the widespread potential of methylmenaquinone production in bacteria and archaea. Environmental Microbiology, 2021, 23, 1407-1421.	1.8	10
66	A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii. Applied and Environmental Microbiology, 2021, 87, e0121121.	1.4	10
67	Respiratory nitrogen metabolism and nitrosative stress defence in $\ddot{\mu}$ -proteobacteria: the role of NssR-type transcription regulators. Biochemical Society Transactions, 2011, 39, 299-302.	1.6	8
68	Hydrogen-Bonded Networks Along and Bifurcation of the E-Pathway in Quinol:Fumarate Reductase. Biophysical Journal, 2012, 103, 1305-1314.	0.2	8
69	Significance of MccR, MccC, MccD, MccL and 8-methylmenaquinone in sulfite respiration of Wolinella succinogenes. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 12-21.	0.5	8
70	The missing enzymatic link in syntrophic methane formation from fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	7
71	Chapter 10: Sulfur Respiration. Advances in Photosynthesis and Respiration, 2004, , 217-232.	1.0	6
72	PsrR, a member of the AraC family of transcriptional regulators, is required for the synthesis of Wolinella succinogenes polysulfide reductase. Archives of Microbiology, 2002, 178, 202-207.	1.0	5

#	Article	IF	CITATIONS
73	TsdC, a unique lipoprotein from Wolinella succinogenes that enhances tetrathionate reductase activity of TsdA. FEMS Microbiology Letters, 2017, 364, fnx003.	0.7	4
74	The Genus Wolinella., 2006,, 178-191.		2
75	A third crystal form of Wolinella succinogenes quinol:fumarate reductase reveals domain closure at the site of fumarate reduction. FEBS Journal, 2001, 268, 1820-1827.	0.2	1
76	Mitigation of Laughing Gas Emissions by Nitrous Oxide Respiring Microorganisms., 2021,, 185-211.		1
77	Electron Transport in Facultative Anaerobes. , 2013, , 630-633.		0
78	Electron Transport in Facultative Anaerobes. , 2018, , 1-4.		O