
Matej Bracic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7282892/publications.pdf Version: 2024-02-01

Μλτει Βρλαιά

#	Article	IF	CITATIONS
1	Consolidation of cellulose nanofibrils with lignosulphonate bio-waste into excellent flame retardant and UV blocking membranes. Carbohydrate Polymers, 2021, 251, 117126.	5.1	15
2	Protein repellent anti-coagulative mixed-charged cellulose derivative coatings. Carbohydrate Polymers, 2021, 254, 117437.	5.1	8
3	Gold Inks for Inkjet Printing on Photo Paper: Complementary Characterisation. Nanomaterials, 2021, 11, 599.	1.9	10
4	Anticoagulant Activity of Cellulose Nanocrystals from Isora Plant Fibers Assembled on Cellulose and SiO2 Substrates via a Layer-by-Layer Approach. Polymers, 2021, 13, 939.	2.0	6
5	Bioactive Functional Nanolayers of Chitosan–Lysine Surfactant with Single- and Mixed-Protein-Repellent and Antibiofilm Properties for Medical Implants. ACS Applied Materials & Interfaces, 2021, 13, 23352-23368.	4.0	16
6	Recent Advancements in 3D Printing of Polysaccharide Hydrogels in Cartilage Tissue Engineering. Materials, 2021, 14, 3977.	1.3	31
7	Succinylation of Polyallylamine: Influence on Biological Efficacy and the Formation of Electrospun Fibers. Polymers, 2021, 13, 2840.	2.0	2
8	Water-based carbodiimide mediated synthesis of polysaccharide-amino acid conjugates: Deprotection, charge and structural analysis. Carbohydrate Polymers, 2021, 267, 118226.	5.1	9
9	Comparison of Trimethylsilyl Cellulose-Stabilized Carbonate and Hydroxide Nanoparticles for Deacidification and Strengthening of Cellulose-Based Cultural Heritage. ACS Omega, 2020, 5, 29243-29256.	1.6	13
10	Electrospun nanofibrous composites from cellulose acetate / ultra-high silica zeolites and their potential for VOC adsorption from air. Carbohydrate Polymers, 2020, 236, 116071.	5.1	27
11	Efficiency of Differently Processed Membranes Based on Cellulose as Cationic Dye Adsorbents. Nanomaterials, 2020, 10, 642.	1.9	28
12	Design of stable and new polysaccharide nanoparticles composite and their interaction with solid cellulose surfaces. Nano Structures Nano Objects, 2020, 24, 100564.	1.9	10
13	Affinity of Serum Albumin and Fibrinogen to Cellulose, Its Hydrophobic Derivatives and Blends. Frontiers in Chemistry, 2019, 7, 581.	1.8	7
14	Highly Protein Repellent and Antiadhesive Polysaccharide Biomaterial Coating for Urinary Catheter Applications. ACS Biomaterials Science and Engineering, 2019, 5, 5825-5832.	2.6	29
15	Chemical Structure–Antioxidant Activity Relationship of Water–Based Enzymatic Polymerized Rutin and Its Wound Healing Potential. Polymers, 2019, 11, 1566.	2.0	16
16	Protonation behavior of dextran amino acid esters. Turkish Journal of Chemistry, 2019, 43, 869-880.	0.5	1
17	Nano- and Micropatterned Polycaprolactone Cellulose Composite Surfaces with Tunable Protein Adsorption, Fibrin Clot Formation, and Endothelial Cellular Response. Biomacromolecules, 2019, 20, 2327-2337.	2.6	21
18	Robust Superhydrophobic Cellulose Nanofiber Aerogel for Multifunctional Environmental Applications. Polymers, 2019, 11, 495.	2.0	37

Matej Bracic

#	Article	IF	CITATIONS
19	Functionalisation of Silicone by Drug-Embedded Chitosan Nanoparticles for Potential Applications in Otorhinolaryngology. Materials, 2019, 12, 847.	1.3	10
20	Functionalization of Polymer Materials for Medical Applications Using Chitosan Nanolayers. , 2019, , 333-358.		2
21	Surface modification of silicone with colloidal polysaccharides formulations for the development of antimicrobial urethral catheters. Applied Surface Science, 2019, 463, 889-899.	3.1	24
22	Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance. Cellulose, 2018, 25, 537-547.	2.4	11
23	Effect of different surface active polysaccharide derivatives on the formation of ethyl cellulose particles by the emulsion-solvent evaporation method. Cellulose, 2018, 25, 6901-6922.	2.4	28
24	Novel protein-repellent and antimicrobial polysaccharide multilayer thin films. Holzforschung, 2018, 73, 93-103.	0.9	10
25	Catheter Associated Urethral Tract Infections. Springer Briefs in Molecular Science, 2018, , 11-15.	0.1	0
26	Functionalisation of Silicones with Polysaccharides. Springer Briefs in Molecular Science, 2018, , 27-68.	0.1	0
27	Polysaccharides in Medical Applications. Springer Briefs in Molecular Science, 2018, , 17-26.	0.1	0
28	Nonspecific protein adsorption on cationically modified Lyocell fibers monitored by zeta potential measurements. Carbohydrate Polymers, 2017, 164, 49-56.	5.1	20
29	Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. Journal of Materials Chemistry B, 2017, 5, 3888-3897.	2.9	32
30	Oneâ€Step Noncovalent Surface Functionalization of PDMS with Chitosanâ€Based Bioparticles and Their Proteinâ€Repellent Properties. Advanced Materials Interfaces, 2017, 4, 1700416.	1.9	19
31	Antimicrobial efficiency evaluation by monitoring potassium efflux for cellulose fibres functionalised by chitosan. Cellulose, 2015, 22, 1933-1942.	2.4	8
32	Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study. Langmuir, 2015, 31, 12043-12053.	1.6	20
33	The effect of chitosan nanoparticles onto Lactobacillus cells. Reactive and Functional Polymers, 2015, 97, 56-62.	2.0	25
34	Antifouling coating of cellulose acetate thin films with polysaccharide multilayers. Carbohydrate Polymers, 2015, 116, 149-158.	5.1	61
35	Film formation of ï‰-aminoalkylcellulose carbamates – A quartz crystal microbalance (QCM) study. Carbohydrate Polymers, 2015, 116, 111-116.	5.1	9
36	Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Advances, 2014, 4, 11955-11961.	1.7	45

Matej Bracic

#	Article	IF	CITATIONS
37	A novel synergistic formulation between a cationic surfactant from lysine and hyaluronic acid as an antimicrobial coating for advanced cellulose materials. Cellulose, 2014, 21, 2647-2663.	2.4	23
38	Antimicrobial and antioxidant functionalization of viscose fabric using chitosan–curcumin formulations. Textile Reseach Journal, 2014, 84, 819-830.	1.1	53
39	Stability of a chitosan layer deposited onto a polyethylene surface. Journal of Applied Polymer Science, 2013, 130, 2444-2457.	1.3	24
40	Influence of sulfated arabino- and glucuronoxylans charging-behavior regarding antithrombotic properties. Reactive and Functional Polymers, 2013, 73, 1639-1645.	2.0	14
41	Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Open Chemistry, 2013, 11, 1786-1798.	1.0	11
42	Low density polyethylene – Chitosan composites. Composites Part B: Engineering, 2013, 55, 314-323.	5.9	51
43	Adsorption of Carboxymethyl Cellulose on Polymer Surfaces: Evidence of a Specific Interaction with Cellulose. Langmuir, 2012, 28, 11440-11447.	1.6	86
44	Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose, 2012, 19, 2057-2067.	2.4	9
45	Charging Behavior and Stability of the Novel Amino Group Containing Cellulose Ester Celluloseâ€4â€{ <i>N</i> â€methylamino]butyrate Hydrochloride. Macromolecular Chemistry and Physics, 2012, 213, 1669-1676.	1.1	10
46	Physicochemical Properties and Bioactivity of a Novel Class of Cellulosics: 6â€Deoxyâ€6â€amino Cellulose Sulfate. Macromolecular Chemistry and Physics, 2012, 213, 539-548.	1.1	18
47	Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: A potentiometric	5.1	54