
## Timothy E Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7282781/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Trihydroxamate Siderophore–Fluoroquinolone Conjugates Are Selective Sideromycin Antibiotics that<br>Target Staphylococcus aureus. Bioconjugate Chemistry, 2013, 24, 473-486.                                                                                                    | 1.8 | 112       |
| 2  | Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and<br>biological studies of the naturally occurring salmycin "Trojan Horse―antibiotics and synthetic<br>desferridanoxamine-antibiotic conjugates. BioMetals, 2009, 22, 633-648. | 1.8 | 110       |
| 3  | A Novel β-Lactam Antibiotic Activates Tumor Cell Apoptotic Program by Inducing DNA Damage.<br>Molecular Pharmacology, 2002, 61, 1348-1358.                                                                                                                                      | 1.0 | 68        |
| 4  | Novel N-thiolated Î <sup>2</sup> -lactam antibiotics selectively induce apoptosis in human tumor and transformed, but not normal or nontransformed, cells. Biochemical Pharmacology, 2004, 67, 365-374.                                                                         | 2.0 | 64        |
| 5  | Repurposing Thiram and Disulfiram as Antibacterial Agents for Multidrug-Resistant Staphylococcus aureus Infections. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                                                                          | 1.4 | 49        |
| 6  | N-Thiolated β-Lactams: novel antibacterial agents for methicillin-Resistant Staphylococcus aureus.<br>Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2229-2231.                                                                                                          | 1.0 | 46        |
| 7  | Anti-tumor activity of N-thiolated $\hat{I}^2$ -lactam antibiotics. Cancer Letters, 2008, 268, 63-69.                                                                                                                                                                           | 3.2 | 44        |
| 8  | N-thiolated β-lactams: Studies on the mode of action and identification of a primary cellular target in Staphylococcus aureus. Bioorganic and Medicinal Chemistry, 2007, 15, 2453-2467.                                                                                         | 1.4 | 43        |
| 9  | Generation of a highly attenuated strain of <i>Pseudomonas aeruginosa</i> for commercial production of alginate. Microbial Biotechnology, 2020, 13, 162-175.                                                                                                                    | 2.0 | 43        |
| 10 | Disulfiram-based disulfides as narrow-spectrum antibacterial agents. Bioorganic and Medicinal<br>Chemistry Letters, 2018, 28, 1298-1302.                                                                                                                                        | 1.0 | 40        |
| 11 | N-Thiolated β-lactam antibacterials: Effects of the N-organothio substituent on anti-MRSA activity.<br>Bioorganic and Medicinal Chemistry, 2006, 14, 3775-3784.                                                                                                                 | 1.4 | 37        |
| 12 | N-Methylthio β-lactam antibacterials: Effects of the C3/C4 ring substituents on anti-MRSA activity.<br>Bioorganic and Medicinal Chemistry, 2005, 13, 6289-6308.                                                                                                                 | 1.4 | 34        |
| 13 | Antibacterial activity of disulfiram and its metabolites. Journal of Applied Microbiology, 2019, 126, 79-86.                                                                                                                                                                    | 1.4 | 34        |
| 14 | N-Thiolated β-lactams: A new family of anti-Bacillus agents. Bioorganic and Medicinal Chemistry Letters,<br>2006, 16, 2084-2090.                                                                                                                                                | 1.0 | 33        |
| 15 | 1,4-Naphthoquinone Cations as Antiplasmodial Agents: Hydroxy-, Acyloxy-, and Alkoxy-Substituted<br>Analogues. ACS Medicinal Chemistry Letters, 2012, 3, 1029-1033.                                                                                                              | 1.3 | 30        |
| 16 | Allicin-inspired pyridyl disulfides as antimicrobial agents for multidrug-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2018, 143, 1185-1195.                                                                                                       | 2.6 | 30        |
| 17 | Phosphonium lipocations as antiparasitic agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2976-2979.                                                                                                                                                               | 1.0 | 27        |
| 18 | Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand.<br>Communications Chemistry, 2019, 2, .                                                                                                                                              | 2.0 | 21        |

2

TIMOTHY E LONG

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lipase-catalyzed resolution of 4-aryl-substituted β-lactams: effect of substitution on the 4-aryl ring.<br>Tetrahedron, 2003, 59, 9147-9160.                                                     | 1.0 | 19        |
| 20 | N-Thiolated β-Lactam Antibacterials: Defining the Role of Unsaturation in the C4 Side Chain. Bioorganic and Medicinal Chemistry, 2003, 11, 193-196.                                              | 1.4 | 17        |
| 21 | Effect of Aryl Ring Fluorination on the Antibacterial Properties of C4 Aryl-Substituted N-Methylthio<br>β-Lactams. Bioorganic and Medicinal Chemistry, 2003, 11, 1859-1863.                      | 1.4 | 15        |
| 22 | Allicin-inspired thiolated fluoroquinolones as antibacterials against ESKAPE pathogens. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5545-5549.                                         | 1.0 | 15        |
| 23 | Preparation of vinylglycines by thermolysis of homocysteine sulfoxides. Tetrahedron Letters, 2009, 50, 5067-5070.                                                                                | 0.7 | 13        |
| 24 | Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.<br>Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1305-1309.                                 | 1.0 | 13        |
| 25 | o-Nitrophenyl Sulfoxides: Efficient Precursors for the Mild Preparation of Alkenes. Journal of<br>Organic Chemistry, 2010, 75, 249-252.                                                          | 1.7 | 12        |
| 26 | Asymmetric synthesis of monocyclic β-lactams from l-cysteine using photochemistry. Tetrahedron<br>Letters, 2011, 52, 5051-5054.                                                                  | 0.7 | 12        |
| 27 | Cephalosporins currently in early clinical trials for the treatment of bacterial infections. Expert<br>Opinion on Investigational Drugs, 2014, 23, 1375-1387.                                    | 1.9 | 12        |
| 28 | Binding of thiazolidinediones to the endoplasmic reticulum protein nutrient-deprivation autophagy<br>factor-1. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 901-904.                    | 1.0 | 11        |
| 29 | Efficacy of Aerosolized Rifaximin versus Tobramycin for Treatment of Pseudomonas aeruginosa<br>Pneumonia in Mice. Antimicrobial Agents and Chemotherapy, 2019, 63, .                             | 1.4 | 7         |
| 30 | Haloenol pyranones and morpholinones as antineoplastic agents of prostate cancer. Bioorganic and<br>Medicinal Chemistry Letters, 2012, 22, 4854-4858.                                            | 1.0 | 5         |
| 31 | Effects of caspofungin, tolcapone and other FDA-approved medications on MRSA susceptibility to vancomycin. Journal of Global Antimicrobial Resistance, 2020, 22, 283-289.                        | 0.9 | 5         |
| 32 | Correlation of MRSA polymerase chain reaction (PCR) wound swab testing and wound cultures in skin and soft tissue infections. Diagnostic Microbiology and Infectious Disease, 2021, 100, 115389. | 0.8 | 5         |
| 33 | Disulfiram: A Repurposed Drug in Preclinical and Clinical Development for the Treatment of<br>Infectious Diseases. Anti-Infective Agents, 2022, 20, .                                            | 0.1 | 5         |
| 34 | New antibiotics in clinical trials forClostridium difficile. Expert Review of Anti-Infective Therapy, 2016, 14, 789-800.                                                                         | 2.0 | 4         |
| 35 | Pharmacological evaluation of disulfiram analogs as antimicrobial agents and their application as inhibitors of fosB-mediated fosfomycin resistance. Journal of Antibiotics, 2022, 75, 146-154.  | 1.0 | 4         |
| 36 | Phase-Transfer Catalysts in the O-Alkylation of 2-Hydroxynaphthoquinones. Synthesis, 2012, 44, 3225-3230.                                                                                        | 1.2 | 3         |

TIMOTHY E LONG

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Spiropiperidyl rifabutins: expanded in vitro testing against ESKAPE pathogens and select bacterial biofilms. Journal of Antibiotics, 2020, 73, 868-872.                                                       | 1.0 | 3         |
| 38 | Recent progress toward the clinical development of new anti-MRSA antibiotics. IDrugs: the<br>Investigational Drugs Journal, 2003, 6, 351-9.                                                                   | 0.7 | 3         |
| 39 | Context-dependent activation of p53 target genes and induction of apoptosis by actinomycin D in aerodigestive tract cancers. Apoptosis: an International Journal on Programmed Cell Death, 2022, 27, 342-353. | 2.2 | 3         |
| 40 | Effect of copper on the antifungal activity of disulfiram (Antabuse®) in fluconazole-resistant<br><i>Candida</i> strains. Medical Mycology, 2022, 60, .                                                       | 0.3 | 2         |