Scott J Novick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7282732/publications.pdf

Version: 2024-02-01

516710 477307 1,551 29 16 29 citations g-index h-index papers 35 35 35 2770 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 2018, 175, 1756-1768.e17.	28.9	372
2	HDX Workbench: Software for the Analysis of H/D Exchange MS Data. Journal of the American Society for Mass Spectrometry, 2012, 23, 1512-1521.	2.8	258
3	Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. ELife, 2016, 5, .	6.0	212
4	Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell, 2018, 175, 212-223.e17.	28.9	195
5	Full antagonism of the estrogen receptor without a prototypical ligand side chain. Nature Chemical Biology, 2017, 13, 111-118.	8.0	48
6	Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA. Structure, 2017, 25, 1506-1518.e4.	3.3	45
7	Structure of an AMPK complex in an inactive, ATP-bound state. Science, 2021, 373, 413-419.	12.6	42
8	Structures of the human LONP1 protease reveal regulatory steps involved in protease activation. Nature Communications, 2021, 12, 3239.	12.8	40
9	Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. Journal of Biological Chemistry, 2017, 292, 12653-12666.	3.4	39
10	HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. Nature Communications, 2017, 8, 923.	12.8	39
11	Structures of AMP-activated protein kinase bound to novel pharmacological activators in phosphorylated, non-phosphorylated, and nucleotide-free states. Journal of Biological Chemistry, 2019, 294, 953-967.	3.4	29
12	HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nature Communications, 2018, 9, 5366.	12.8	26
13	Cryo-EM structure of human GPR158 receptor coupled to the RGS7-GÎ ² 5 signaling complex. Science, 2022, 375, 86-91.	12.6	24
14	One-step construction of circularized nanodiscs using SpyCatcher-SpyTag. Nature Communications, 2021, 12, 5451.	12.8	22
15	Discovery of Hydrolysis-Resistant Isoindoline <i>N</i> -Acyl Amino Acid Analogues that Stimulate Mitochondrial Respiration. Journal of Medicinal Chemistry, 2018, 61, 3224-3230.	6.4	20
16	Definition of functionally and structurally distinct repressive states in the nuclear receptor PPAR \hat{I}^3 . Nature Communications, 2019, 10, 5825.	12.8	20
17	Nucleotide Binding to ARL2 in the TBCD â^™ ARL2 â^™ β-Tubulin Complex Drives Conformational Changes in β-Tubulin. Journal of Molecular Biology, 2017, 429, 3696-3716.	4.2	18
18	Structural organization of a major neuronal G protein regulator, the RGS7-G \hat{i}^2 5-R7BP complex. ELife, 2018, 7, .	6.0	18

SCOTT J NOVICK

#	Article	IF	CITATIONS
19	CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	16
20	Dual-mechanism estrogen receptor inhibitors. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,118$	7.1	16
21	Comparative Analysis of Cleavage Specificities of Immobilized Porcine Pepsin and Nepenthesin II under Hydrogen/Deuterium Exchange Conditions. Analytical Chemistry, 2020, 92, 11018-11028.	6.5	12
22	HDX-MS reveals structural determinants for $ROR\hat{l}^3$ hyperactivation by synthetic agonists. ELife, 2019, 8, .	6.0	12
23	Unique Polypharmacology Nuclear Receptor Modulator Blocks Inflammatory Signaling Pathways. ACS Chemical Biology, 2019, 14, 1051-1062.	3.4	8
24	Structural and Dynamic Elucidation of a Non-acid PPAR \hat{I}^3 Partial Agonist: SR1988. Nuclear Receptor Research, 2018, 5, .	2.5	5
25	Conformational Changes of RORÎ ³ During Response Element Recognition and Coregulator Engagement. Journal of Molecular Biology, 2021, 433, 167258.	4.2	4
26	Identification of potent $ROR\hat{l}^2$ modulators: Scaffold variation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3210-3215.	2.2	3
27	Structure–Activity Relationship and Biological Investigation of SR18292 (16), a Suppressor of Glucagon-Induced Glucose Production. Journal of Medicinal Chemistry, 2021, 64, 980-990.	6.4	2
28	Cryo-EM structure of human GPR158 receptor coupled to the RGS7-GÎ ² 5 signaling complex. Science, 2021, , eabl4732.	12.6	2
29	Synthetic fluorescent MYC probe: Inhibitor binding site elucidation and development of a high-throughput screening assay. Bioorganic and Medicinal Chemistry, 2021, 42, 116246.	3.0	1