
Aysegul Akdogan Eker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7282518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon nanotube-based nanocomposites and their applications. Journal of Adhesion Science and Technology, 2017, 31, 1977-1997.	2.6	105
2	Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. International Communications in Heat and Mass Transfer, 2018, 99, 18-25.	5.6	85
3	Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. International Communications in Heat and Mass Transfer, 2018, 97, 30-38.	5.6	68
4	Comparison of the early period effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on the Achilles tendon ruptures in rats. Connective Tissue Research, 2016, 57, 360-373.	2.3	34
5	Analysis of Microstructures and Mechanical Properties of Particle Reinforced AlSi7Mg2 Matrix Composite Materials. Journal of Materials Engineering and Performance, 2011, 20, 1090-1096.	2.5	18
6	Neutron shielding characteristics of polymer composites with boron carbide. Journal of the Korean Physical Society, 2021, 78, 566-573.	0.7	15
7	Experimental Study on the Stability and Viscosity for the Blends of Functionalized MWCNTs with Refrigeration Compressor Oils. Current Nanoscience, 2018, 14, 216-226.	1.2	12
8	Fabrication and Mechanical Properties of Cnt/6063 Al Composites Prepared by Vacuum Assisted Infiltration Technique Using Cnt-Al Preforms. Advanced Composites Letters, 2012, 21, 096369351202100.	1.3	9
9	Microstructure and Oxidation Behavior of Atmospheric Plasma-Sprayed Thermal Barrier Coatings. , 2018, , 793-814.		9
10	An investigation of oxidation, hot corrosion, and thermal shock behavior of atmospheric plasma-sprayed YSZ–Al ₂ O ₃ composite thermal barrier coatings. International Journal of Materials Research, 2020, 111, 567-580.	0.3	8
11	Effect of coupling agent and alkali treatment on mechanical, thermal and morphological properties of flax-fiber-reinforced PLA composites. Green Materials, 2021, 9, 131-144.	2.1	5
12	Material selection in hot shaping molds of titanium alloys. Procedia Manufacturing, 2020, 50, 723-728.	1.9	4
13	Developing Packaging by Using Smart Material which Helps to Realize Spoilage in Yoghurt. Key Engineering Materials, 0, 471-472, 185-190.	0.4	2
14	Surface Roughness Changes on Î ² -Titanium Orthodontic Wires after Corrosion in Various Artificial Saliva Solutions. Materialpruefung/Materials Testing, 2013, 55, 374-378.	2.2	1
15	Surface Roughness Changes and Corrosion on Nickel Titanium Orthodontic Wires Compared to Stainless Steel Wires in Various Artificial Salivas. Materialpruefung/Materials Testing, 2012, 54, 261-265.	2.2	1
16	Creep Behaviour of NearEquiatomic Nickel-Titanium Wires. Materialpruefung/Materials Testing, 2013, 55, 92-95.	2.2	1
17	Effect of titanium dioxide nanotubes on the mechanical and antibacterial properties of the low-viscosity bulk-fill composite. Journal of Adhesion Science and Technology, 0, , 1-18.	2.6	0
18	Effects of Sonication Time on the Stability and Viscosity of Functionalized MWCNT-Based Nanolubricants. Current Nanoscience, 2020, 16, 639-654.	1.2	0

#	Article	IF	CITATIONS
19	Numerical simulation and experimental analysis for evaluating warpage of a 3D thin-walled polymeric part using the injection compression molding process. International Polymer Processing, 2022, .	0.5	0