
Matthew J Currell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7281493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep challenges for China's war on water pollution. Environmental Pollution, 2016, 218, 1222-1233.	3.7	337
2	Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China. Applied Geochemistry, 2011, 26, 540-552.	1.4	192
3	Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China. Journal of Hydrology, 2014, 508, 12-27.	2.3	175
4	Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environmental Pollution, 2019, 248, 101-113.	3.7	150
5	Persistent organic pollutants in China's surface water systems. Science of the Total Environment, 2017, 580, 602-625.	3.9	148
6	A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations. Journal of Hydrology, 2017, 555, 797-811.	2.3	115
7	Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain. Science of the Total Environment, 2017, 609, 607-620.	3.9	107
8	Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 2010, 189, 92-104.	0.8	102
9	Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Science of the Total Environment, 2022, 802, 149727.	3.9	100
10	Contaminants of Emerging Concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas. Water Research, 2018, 146, 118-133.	5.3	99
11	Sustainability of groundwater usage in northern China: dependence on palaeowaters and effects on water quality, quantity and ecosystem health. Hydrological Processes, 2012, 26, 4050-4066.	1.1	98
12	Alterations to groundwater recharge due to anthropogenic landscape change. Journal of Hydrology, 2017, 554, 545-557.	2.3	98
13	Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. Journal of Hydrology, 2010, 385, 216-229.	2.3	96
14	A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: Implications for soil and groundwater salinity resulting from surface water transfer for irrigation. Journal of Hydrology, 2011, 405, 217-234.	2.3	83
15	Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. Journal of Geochemical Exploration, 2014, 136, 24-39.	1.5	79
16	Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Science of the Total Environment, 2018, 644, 1409-1417.	3.9	70
17	Using chlorofluorocarbons (CFCs) and tritium to improve conceptual model of groundwater flow in the South Coast Aquifers of Laizhou Bay, China. Hydrological Processes, 2012, 26, 3614-3629.	1.1	66
18	Review of drivers and threats to coastal groundwater quality in China. Science of the Total Environment, 2022, 806, 150913.	3.9	60

MATTHEW J CURRELL

#	Article	IF	CITATIONS
19	Hydrogeochemical Indicators of Groundwater Flow Systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China. Environmental Management, 2009, 44, 243-255.	1.2	59
20	Nitrogen stock and leaching rates in a thick vadose zone below areas of long-term nitrogen fertilizer application in the North China Plain: A future groundwater quality threat. Journal of Hydrology, 2019, 576, 28-40.	2.3	59
21	Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence. Hydrology and Earth System Sciences, 2018, 22, 3473-3491.	1.9	52
22	Is the global public willing to drink recycled water? A review for researchers and practitioners. Utilities Policy, 2019, 56, 53-61.	2.1	43
23	Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance. Science of the Total Environment, 2016, 544, 995-1007.	3.9	40
24	A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. Journal of Hydrology, 2020, 580, 124247.	2.3	39
25	Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China. Hydrogeology Journal, 2011, 19, 835-850.	0.9	35
26	Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields, Xinzhou Basin, Shanxi, China. Hydrological Processes, 2010, 24, 3157-3176.	1.1	34
27	Sensitive and ultra-fast determination of arsenic(III) by gas-diffusion flow injection analysis with chemiluminescence detection. Analytica Chimica Acta, 2007, 583, 72-77.	2.6	33
28	A New Assessment Framework for Transience in Hydrogeological Systems. Ground Water, 2016, 54, 4-14.	0.7	32
29	Delineation of contaminant sources and denitrification using isotopes of nitrate near a wastewater treatment plant in peri-urban settings. Science of the Total Environment, 2019, 651, 2701-2711.	3.9	32
30	Problems with the application of hydrogeological science to regulation of Australian mining projects: Carmichael Mine and Doongmabulla Springs. Journal of Hydrology, 2017, 548, 674-682.	2.3	31
31	Adaptive management in groundwater planning and development: A review of theory and applications. Journal of Hydrology, 2020, 586, 124871.	2.3	31
32	Predicting external water pressure and cracking of a tunnel lining by measuring water inflow rate. Tunnelling and Underground Space Technology, 2018, 71, 115-125.	3.0	29
33	Nitrogen contamination and bioremediation in groundwater and the environment: A review. Earth-Science Reviews, 2021, 222, 103816.	4.0	29
34	Controls on distributions of sulphate, fluoride, and salinity in aquitard porewater from the North China Plain: Long-term implications for groundwater quality. Journal of Hydrology, 2021, 603, 126828.	2.3	28
35	system in northeast China: evidence from major ions, <i>l´</i> ¹³ C _{DIC& and &:lt:i&:gt:l´&:lt:/i&:gt:&:lt:sup&:gt:34&:lt:/sup&:gt:S&:lt:sub&:gt:SO&}	1.9	27
36	Hydrology and Earth System Sciences, 2016, 20, 1983-1999. A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence. Environmental Pollution, 2018, 241, 787-799.	3.7	25

MATTHEW J CURRELL

#	Article	IF	CITATIONS
37	Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations. Journal of Asian Earth Sciences, 2016, 127, 119-136.	1.0	24
38	Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia. Environmental Science and Pollution Research, 2017, 24, 13168-13183.	2.7	23
39	Groundwater Salinization and Flushing During Glacialâ€Interglacial Cycles: Insights From Aquitard Porewater Tracer Profiles in the North China Plain. Water Resources Research, 2020, 56, e2020WR027879.	1.7	23
40	Drawdown "Triggers†A Misguided Strategy for Protecting Groundwaterâ€Fed Streams and Springs. Ground Water, 2016, 54, 619-622.	0.7	20
41	Using multiple lines of evidence to map groundwater recharge in a rapidly urbanising catchment: Implications for future land and water management. Journal of Hydrology, 2020, 580, 124265.	2.3	20
42	Analysis of environmental isotopes in groundwater to understand the response of a vulnerable coastal aquifer to pumping: Western Port Basin, south-eastern Australia. Hydrogeology Journal, 2013, 21, 1413-1427.	0.9	19
43	Stable isotopes as indicators of water and salinity sources in a southeast Australian coastal wetland: identifying relict marine water, and implications for future change. Hydrogeology Journal, 2015, 23, 235-248.	0.9	19
44	Effects of short-term flooding on arsenic transport in groundwater system: A case study of the Datong Basin. Journal of Geochemical Exploration, 2015, 158, 1-9.	1.5	19
45	Incorporating perfluoroalkyl acids (PFAA) into a geochemical index for improved delineation of legacy landfill impacts on groundwater. Science of the Total Environment, 2019, 666, 1198-1208.	3.9	19
46	The Global Drain: Why China's Water Pollution Problems Should Matter to the Rest of the World. Environment, 2017, 59, 16-29.	0.8	15
47	Environmental isotopes as indicators of groundwater recharge, residence times and salinity in a coastal urban redevelopment precinct in Australia. Hydrogeology Journal, 2020, 28, 503-520.	0.9	14
48	Decoupling of solutes and water in regional groundwater systems: The Murray Basin, Australia. Chemical Geology, 2017, 466, 466-478.	1.4	13
49	Combination of CFCs and stable isotopes to characterize the mechanism of groundwater–surface water interactions in a headwater basin of the North China Plain. Hydrological Processes, 2018, 32, 1571-1587.	1.1	10
50	Fault-controlled springs: A review. Earth-Science Reviews, 2022, 230, 104058.	4.0	10
51	Enhancing Access to Safe Drinking Water in Remote Fijian Communities: Modeling and Implementing a Pilot Rain-Rank Disinfection Program. Environmental Engineering Science, 2021, 38, 430-442.	0.8	8
52	Reactive transport model for predicting arsenic transport in groundwater system in Datong Basin. Journal of Geochemical Exploration, 2018, 190, 245-252.	1.5	7
53	Mega-scale groundwater quality challenges and the need for an inter-disciplinary approach. Hydrogeology Journal, 2014, 22, 745-748.	0.9	6
54	Using corporate sustainability reporting to assess the environmental footprint of titanium and zirconium mining. The Extractive Industries and Society, 2022, 9, 101034.	0.7	5

MATTHEW J CURRELL

#	Article	IF	CITATIONS
55	Cultivating hope for a better future: research contributions from young scholars in earth and environmental sciences. Environmental Science and Pollution Research, 2017, 24, 13149-13153.	2.7	3
56	A framework and simple decision support tool for groundwater contamination assessment in an urban redevelopment precinct. Hydrogeology Journal, 2019, 27, 1911-1928.	0.9	3
57	The Variation in Groundwater Microbial Communities in an Unconfined Aquifer Contaminated by Multiple Nitrogen Contamination Sources. Water (Switzerland), 2022, 14, 613.	1.2	3
58	Screening of Atrazine Distribution in Groundwater and Modeling of Leaching Potential to the Unconfined Aquifer in the Pampean Plain of Cordoba, Argentina. Environmental Processes, 2022, 9, .	1.7	3
59	Novel molecular tracers for the assessment of groundwater pollution. Current Opinion in Environmental Science and Health, 2022, 26, 100331.	2.1	2
60	Editors' Message: The 2013 Editors' Choice articles, a new editor, and the 2013 â€ ⁻ Coolest Paper' aw Hydrogeology Journal, 2014, 22, 293-294.	ard. 0.9	0
61	Editors' Message: The 2014 Editors' Choice articles and the 2014 â€~Coolest Paper' award. Hydrogeo Journal, 2015, 23, 215-216.	logy G.Y	0
62	Reply to Harrington et al.'s Comment on "Drawdown †Triggers': A Misguided Strategy for Protecting Groundwaterâ€Fed Streams and Springs,―by Matthew J. Currell, 2016, v. 54, no. 5: 619–622. Ground Water, 2017, 55, 154-154.	0.7	0