
Melanie Legrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7281034/publications.pdf Version: 2024-02-01

MELANIELECRAND

#	Article	IF	CITATIONS
1	Overexpression approaches to advance understanding of <i>Candida albicans</i> . Molecular Microbiology, 2022, 117, 589-599.	2.5	12
2	Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model. Journal of Fungi (Basel, Switzerland), 2022, 8, 650.	3.5	1
3	Factors that influence bidirectional long-tract homozygosis due to double-strand break repair in <i>Candida albicans</i> . Genetics, 2021, 218, .	2.9	1
4	Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. MSphere, 2020, 5, .	2.9	10
5	Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact. MSphere, 2019, 4, .	2.9	5
6	Candida albicans: An Emerging Yeast Model to Study Eukaryotic Genome Plasticity. Trends in Genetics, 2019, 35, 292-307.	6.7	35
7	Generating genomic platforms to study Candida albicans pathogenesis. Nucleic Acids Research, 2018, 46, 6935-6949.	14.5	30
8	Genome Diversity and Dynamics in Candida albicans. , 2017, , 205-232.		4
9	Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome. MBio, 2016, 7, .	4.1	31
10	A FACS-Optimized Screen Identifies Regulators of Genome Stability in Candida albicans. Eukaryotic Cell, 2015, 14, 311-322.	3.4	19
11	A study of the <scp>DNA</scp> damage checkpoint in <i><scp>C</scp>andida albicans</i> : uncoupling of the functions of <scp>Rad</scp> 53 in <scp>DNA</scp> repair, cell cycle regulation and genotoxic stressâ€induced polarized growth. Molecular Microbiology, 2014, 91, 452-471.	2.5	39
12	A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness. PLoS ONE, 2012, 7, e45912.	2.5	103
13	Modular Gene Over-expression Strategies for Candida albicans. Methods in Molecular Biology, 2012, 845, 227-244.	0.9	18
14	The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans. Fungal Genetics and Biology, 2011, 48, 823-830.	2.1	28
15	Analysis of base excision and nucleotide excision repair in Candida albicans. Microbiology (United) Tj ETQq1 1 C	.784314 rg 1.8	gBT ₃ /Overlock
16	Haplotype Mapping of a Diploid Non-Meiotic Organism Using Existing and Induced Aneuploidies. PLoS Genetics, 2008, 4, e1.	3.5	129
17	Role of DNA Mismatch Repair and Double-Strand Break Repair in Genome Stability and Antifungal Drug Resistance in <i>Candida albicans</i> . Eukaryotic Cell, 2007, 6, 2194-2205.	3.4	95
18	Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formationâ€. Molecular Microbiology, 2004, 52, 1451-1462.	2.5	104