Melanie Legrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7281034/publications.pdf

Version: 2024-02-01

18 papers	702 citations	759233 12 h-index	18 g-index
paporo			5 maon
21 all docs	21 docs citations	21 times ranked	820 citing authors

#	Article	IF	Citations
1	Haplotype Mapping of a Diploid Non-Meiotic Organism Using Existing and Induced Aneuploidies. PLoS Genetics, 2008, 4, e1.	3.5	129
2	Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formationâ€. Molecular Microbiology, 2004, 52, 1451-1462.	2.5	104
3	A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness. PLoS ONE, 2012, 7, e45912.	2.5	103
4	Role of DNA Mismatch Repair and Double-Strand Break Repair in Genome Stability and Antifungal Drug Resistance in <i>Candida albicans</i> Lukaryotic Cell, 2007, 6, 2194-2205.	3.4	95
5	A study of the <scp>DNA</scp> damage checkpoint in <i><scp>C</scp>andida albicans</i> : uncoupling of the functions of <scp>Rad</scp> 53 in <scp>DNA</scp> repair, cell cycle regulation and genotoxic stressâ€induced polarized growth. Molecular Microbiology, 2014, 91, 452-471.	2.5	39
6	Analysis of base excision and nucleotide excision repair in Candida albicans. Microbiology (United) Tj ETQq0 0 0	rgBT/Ove	rlogk 10 Tf 50
7	Candida albicans: An Emerging Yeast Model to Study Eukaryotic Genome Plasticity. Trends in Genetics, 2019, 35, 292-307.	6.7	35
8	Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome. MBio, 2016, 7, .	4.1	31
9	Generating genomic platforms to study Candida albicans pathogenesis. Nucleic Acids Research, 2018, 46, 6935-6949.	14.5	30
10	The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans. Fungal Genetics and Biology, 2011, 48, 823-830.	2.1	28
11	A FACS-Optimized Screen Identifies Regulators of Genome Stability in Candida albicans. Eukaryotic Cell, 2015, 14, 311-322.	3.4	19
12	Modular Gene Over-expression Strategies for Candida albicans. Methods in Molecular Biology, 2012, 845, 227-244.	0.9	18
13	Overexpression approaches to advance understanding of $\langle i \rangle$ Candida albicans $\langle i \rangle$. Molecular Microbiology, 2022, 117, 589-599.	2.5	12
14	Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. MSphere, 2020, 5, .	2.9	10
15	Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact. MSphere, 2019, 4, .	2.9	5
16	Genome Diversity and Dynamics in Candida albicans. , 2017, , 205-232.		4
17	Factors that influence bidirectional long-tract homozygosis due to double-strand break repair in $\langle i \rangle$ Candida albicans $\langle i \rangle$. Genetics, 2021, 218, .	2.9	1
18	Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model. Journal of Fungi (Basel, Switzerland), 2022, 8, 650.	3.5	1