
Vladimir Lysenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7280915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Disturbances in the Supersonic Boundary Layer under Helium Injection from the Surface. Siberian Journal of Physics, 2022, 16, 41-47.	0.3	0

2 КЕÐÐМÐ⁻КЕÐ⁻З ÐÐÐОПОÐОДКЕОКСÐ⁻ДЕМĐžÐ›Ð⁻ÐʻДЕÐÐ9 СÐ'ОЙСТÐ'ЕÐ⁻ СО**Ð.**⊕ДÐÐ**Ð**2 ↔ SPS-М

3	Experimental study of influence of heavy gas injection into boundary layer on perforated model surface at Mach number 2 on its stability to controlled disturbances. AIP Conference Proceedings, 2021, , .	0.4	0
4	Influence of surface sublimation on the stability of the supersonic boundary layer and the laminar–turbulent transition. Physics of Fluids, 2021, 33, 024101.	4.0	5
5	ĐšĐµÑ€Đ°Đ¼Đ,ĐºĐ° Đ,Đ· Đ½Đ°Đ½Đ3¼Đ;Đ¾Ñ€Đ¾Ñ℃ĐºĐ° Đ¾ĐºÑĐ,ĐℋÔ Đ¼ĐµĐℋ, ÑĐ¾Đ·ĐℋĐ½Đ½Đ°	Ñ• \$?:6 -Ð1⁄4	еÑ,оÐ1
6	Effect of surface sublimation on boundary-layer stability. AIP Conference Proceedings, 2021, , .	0.4	0
7	ϴϳϴ¾ϴ·ϴʹϿ ^ͽ Ͽ ¹ ⁄2Ͽ͵Ͽμ ϴ·ϿμÑ€ϴ°ϴ¼ϴ͵Ͽ·ϿͺϿͺϿ·ϿϟϨϴ°ϴϟϨϴ¾ϴ;ϴ¾Ňʹϴ·ϿʹϿʹϿϿʹϿʹϿϿϿϿʹŇϯϿ͵Ň€ϴ	⅌Ð敎ⅆⅅ℩∕₂Ð	,Ñ⊕1⁄4еÑ,
8	Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow. Physics of Fluids, 2019, 31, .	4.0	14
9	ϴϗϿμÑ€Ͽ°Ͽ¼Ð͵Ͽ·Ͽ° Ͽ͵Ͽ· Ͽϟͻ·Ͽ¼ͻϿʹϟϿϟϿϟϿϟϿϟŇ€Ͽ¾ŇʹϿ·Ͽ° ϿʹϿ͵Ͽ¾Ͽ·ŇϿ͵ϿʹϿ° Ň͵Ͽ͵Ň͵Ͽ°Ͽϟ₂Ͽ°: ŇϿ¾Đ·ϿʹϿͽ	/₂ ⅅ յⅅµ Đ¼	4 Ð µÑ,Ð34Ð
10	Experimental investigation of influence of tangential and normal heavy-gas blowing on the supersonic boundary-layer stability. AIP Conference Proceedings, 2018, , .	0.4	0
11	Fabrication and Properties of Ceramics Based on Chrome Oxide Nanopowder. Glass Physics and Chemistry, 2018, 44, 204-206.	0.7	0
12	Stability of supersonic boundary layer under the influence of heavy gas injection: experimental study. Thermophysics and Aeromechanics, 2018, 25, 183-190.	0.5	9
13	Production and Properties of Ceramic Obtained From Cobalt Oxide Nanopowder. Glass and Ceramics (English Translation of Steklo I Keramika), 2017, 74, 126-127.	0.6	0
14	Investigation of the effect of heavy gas injection into a supersonic boundary layer on laminar-turbulent transition. Fluid Dynamics, 2017, 52, 769-776.	0.9	3
15	Influence of Heavy Gas Blowing into the Wall Layer of Supersonic Boundary-Layer on Its Transition. Siberian Journal of Physics, 2017, 12, 50-56.	0.3	1
16	Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition. Journal of Fluid Mechanics, 2016, 798, 751-773.	3.4	23
17	Creation and properties of ceramics from niobium oxide nanopowder. Glass Physics and Chemistry, 2016, 42, 522-524.	0.7	1
18	Influence of coating permeability and roughness on supersonic boundary layer stability. AIP Conference Proceedings, 2016, , .	0.4	1

VLADIMIR LYSENKO

#	Article	IF	CITATIONS
19	Microhardness of Ceramic Obtained from Oxide Nanopowders by the Conventional and SPS Methods. Glass and Ceramics (English Translation of Steklo I Keramika), 2015, 71, 431-433.	0.6	Ο
20	On The Influence Of Porous Coating Thickness On Supersonic Boundary Layer Stability. Vestnik Novosibirskogo Gosudarstvennogo Universiteta Seriâ: Fizika, 2015, 10, 41-47.	0.1	1
21	Different-Oxides Nanoceramics Microhardness. International Journal of Nanoscience, 2014, 13, 1440003.	0.7	Ο
22	Joint permeability and roughness effect on the supersonic flat-plate boundary layer stability and transition. Fluid Dynamics, 2014, 49, 608-613.	0.9	4
23	Tribological properties of thin coatings based on epilams modified by nanosized silica. Journal of Friction and Wear, 2014, 35, 161-169.	0.5	3
24	Microhardness of ceramics produced from different alumina nanopowders by different techniques. Inorganic Materials, 2014, 50, 537-540.	0.8	4
25	Theoretical and Experimental Investigation of the First Instability Mode Development in Supersonic Boundary Layers on Porous Coatings. Vestnik Novosibirskogo Gosudarstvennogo Universiteta Seriâ: Fizika, 2014, 9, 65-74.	0.1	1
26	Analysis of Nickel Nanoclusters Size Distribution Synthesized from the Gas Phase. Journal of Computational and Theoretical Nanoscience, 2012, 9, 102-109.	0.4	2
27	Evaluating partial pressure of vapors for various oxides. Thermophysics and Aeromechanics, 2012, 19, 337-342.	0.5	4
28	Influence of porous-coating thickness on the stability and transition of flat-plate supersonic boundary layer. Thermophysics and Aeromechanics, 2012, 19, 555-560.	0.5	7
29	Use of hot-wire anemometry for measuring the nanopowder flow velocity. Fluid Dynamics, 2012, 47, 281-287.	0.9	1
30	Stability of a nanopowder boundary-layer flow on a concave plate. Fluid Dynamics, 2012, 47, 346-350.	0.9	0
31	Investigation of acoustic waves propagation and flow in nanodispersed medium. Thermophysics and Aeromechanics, 2011, 18, 25-30.	0.5	3
32	Gas filtration and separation with nano-size ceramics. Thermophysics and Aeromechanics, 2011, 18, 273-280.	0.5	1
33	Preparation of nickel nanopowder through evaporation of the initial coarsely dispersed materials on an electron accelerator. Physics of the Solid State, 2011, 53, 854-859.	0.6	6
34	Possibilities of production of nanopowders with high power ELV electron accelerator. Bulletin of Materials Science, 2011, 34, 677-681.	1.7	4
35	The influence of surface porosity on the stability and transition of supersonic boundary layer on a flat plate. Thermophysics and Aeromechanics, 2010, 17, 259-268.	0.5	9
36	Compaction of nanopowders through electrophoretic precipitation. Glass Physics and Chemistry, 2010, 36, 679-681.	0.7	0

3

VLADIMIR LYSENKO

#	Article	IF	CITATIONS
37	Properties of ceramics prepared from nanopowders. Inorganic Materials, 2009, 45, 335-339.	0.8	16
38	Experimental determination of the dependence of starch looseness on the concentration of the silicon dioxide nanopowder (tarcosil) in it. Russian Journal of Non-Ferrous Metals, 2009, 50, 383-385.	0.6	1
39	Investigation of the optical properties of aqueous solutions of silica nanopowders. Class Physics and Chemistry, 2009, 35, 176-180.	0.7	Ο
40	Preparation and properties of ceramics from a zirconia nanopowder. Glass Physics and Chemistry, 2009, 35, 538-540.	0.7	2
41	Ceramic from nanopowders and its properties. Glass and Ceramics (English Translation of Steklo I) Tj ETQq1 1 (0.784314 r	gBT_/Overlock
42	Ceramics prepared from silicon dioxide nanopowders. Glass Physics and Chemistry, 2008, 34, 512-514.	0.7	2
43	Stability of a supersonic flat-plate wake (Comparison of numerical and experimental results). Fluid Dynamics, 2008, 43, 869-872.	0.9	0
44	High Volume Synthesis of Silicon Nanopowder by Electron Beam Ablation of Silicon Ingot at Atmospheric Pressure. Japanese Journal of Applied Physics, 2008, 47, 7019-7022.	1.5	5
45	Interaction of a Supersonic Turbulent Wake with Acoustic Disturbances. Fluid Dynamics, 2003, 38, 878-881.	0.9	0
46	Title is missing!. Fluid Dynamics, 2002, 37, 568-575.	0.9	0
47	Experimental studies of stability and transition in high-speed wakes. Journal of Fluid Mechanics, 1999, 392, 1-26.	3.4	18
48	Experimental study of the evolution of perturbations in the supersonic wake behind a flat plate. Fluid Dynamics, 1996, 31, 618-621.	0.9	2
49	Stability of a wake behind a flat plate in a supersonic flow. Journal of Applied Mechanics and Technical Physics, 1995, 36, 844-847.	0.5	1
50	Effect of longitudinal magnetic field on high-speed boundary layer transition. Fluid Dynamics, 1992, 26, 622-624.	0.9	0
51	Influence of the entropy layer on the stability of a supersonic shock layer and transition of the laminar boundary layer to turbulence. Journal of Applied Mechanics and Technical Physics, 1991, 31, 868-873.	0.5	11
52	Step-induced turbulence in a high-velocity boundary layer. Fluid Dynamics, 1989, 24, 150-153.	0.9	0
53	Effect of the specific heat ratio on the stability and laminar-turbulent transition of a supersonic boundary layer. Fluid Dynamics, 1989, 24, 317-321.	0.9	3
54	Development of perturbations near a surface in a supersonic flow. Journal of Applied Mechanics and Technical Physics, 1989, 29, 827-832.	0.5	2

VLADIMIR LYSENKO

#	Article	IF	CITATIONS
55	Stability of a high-speed boundary layer. Journal of Applied Mechanics and Technical Physics, 1989, 29, 832-835.	0.5	2
56	The role of the first and second modes in compressible boundary-layer transition. Journal of Applied Mechanics and Technical Physics, 1986, 26, 809-812.	0.5	2
57	Stability of a nonisothermal boundary layer in the presence of periodic perturbations of the exterior flow velocity. Fluid Dynamics, 1985, 19, 831-834.	0.9	0
58	The Effect of Cooling on the Supersonic Boundary Layer Stability and Transition. , 1985, , 495-502.		1
59	Reversal of the laminar-turbulent transition of a boundary layer on a cooled surface. Fluid Dynamics, 1984, 19, 318-321.	0.9	0
60	The effect of cooling on supersonic boundary-layer stability. Journal of Fluid Mechanics, 1984, 147, 39.	3.4	73
61	Influence of deep cooling on the transition in a supersonic boundary layer. Fluid Dynamics, 1981, 16, 193-198.	0.9	0
62	Laminar-turbulent transition of supersonic boundary layer on a cooled surface. Journal of Applied Mechanics and Technical Physics, 1981, 22, 310-315.	0.5	2
63	Transition reversal and one of its causes. AIAA Journal, 1981, 19, 705-708.	2.6	13
64	Production and Properties of Ceramic Made From Nickel Oxide Nanopowder. Glass and Ceramics (English Translation of Steklo I Keramika), 0, , .	0.6	1