
Vladimir Lysenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7280915/publications.pdf Version: 2024-02-01

VIADIMID I VSENKO

#	Article	IF	CITATIONS
1	The effect of cooling on supersonic boundary-layer stability. Journal of Fluid Mechanics, 1984, 147, 39.	3.4	73
2	Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition. Journal of Fluid Mechanics, 2016, 798, 751-773.	3.4	23
3	Experimental studies of stability and transition in high-speed wakes. Journal of Fluid Mechanics, 1999, 392, 1-26.	3.4	18
4	Properties of ceramics prepared from nanopowders. Inorganic Materials, 2009, 45, 335-339.	0.8	16
5	Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow. Physics of Fluids, 2019, 31, .	4.0	14
6	Transition reversal and one of its causes. AIAA Journal, 1981, 19, 705-708.	2.6	13
7	Influence of the entropy layer on the stability of a supersonic shock layer and transition of the laminar boundary layer to turbulence. Journal of Applied Mechanics and Technical Physics, 1991, 31, 868-873.	0.5	11
8	The influence of surface porosity on the stability and transition of supersonic boundary layer on a flat plate. Thermophysics and Aeromechanics, 2010, 17, 259-268.	0.5	9
9	Stability of supersonic boundary layer under the influence of heavy gas injection: experimental study. Thermophysics and Aeromechanics, 2018, 25, 183-190.	0.5	9
10	Influence of porous-coating thickness on the stability and transition of flat-plate supersonic boundary layer. Thermophysics and Aeromechanics, 2012, 19, 555-560.	0.5	7
11	Preparation of nickel nanopowder through evaporation of the initial coarsely dispersed materials on an electron accelerator. Physics of the Solid State, 2011, 53, 854-859.	0.6	6
12	Ceramic from nanopowders and its properties. Glass and Ceramics (English Translation of Steklo I) Tj ETQq0 0 0	rgBT /Ove 0.6	rloçk 10 Tf 50
13	High Volume Synthesis of Silicon Nanopowder by Electron Beam Ablation of Silicon Ingot at Atmospheric Pressure. Japanese Journal of Applied Physics, 2008, 47, 7019-7022.	1.5	5
14	Influence of surface sublimation on the stability of the supersonic boundary layer and the laminar–turbulent transition. Physics of Fluids, 2021, 33, 024101.	4.0	5
15	Possibilities of production of nanopowders with high power ELV electron accelerator. Bulletin of Materials Science, 2011, 34, 677-681.	1.7	4
16	Evaluating partial pressure of vapors for various oxides. Thermophysics and Aeromechanics, 2012, 19, 337-342.	0.5	4
17	Joint permeability and roughness effect on the supersonic flat-plate boundary layer stability and transition. Fluid Dynamics, 2014, 49, 608-613.	0.9	4
18	Microhardness of ceramics produced from different alumina nanopowders by different techniques. Inorganic Materials, 2014, 50, 537-540.	0.8	4

VLADIMIR LYSENKO

#	Article	IF	CITATIONS
19	Effect of the specific heat ratio on the stability and laminar-turbulent transition of a supersonic boundary layer. Fluid Dynamics, 1989, 24, 317-321.	0.9	3
20	Investigation of acoustic waves propagation and flow in nanodispersed medium. Thermophysics and Aeromechanics, 2011, 18, 25-30.	0.5	3
21	Tribological properties of thin coatings based on epilams modified by nanosized silica. Journal of Friction and Wear, 2014, 35, 161-169.	0.5	3
22	Investigation of the effect of heavy gas injection into a supersonic boundary layer on laminar-turbulent transition. Fluid Dynamics, 2017, 52, 769-776.	0.9	3
23	Đ¡Đ¾Đ·ĐĐ°Đ½Đ͵Đμ Đ⁰ĐμÑ€Đ°Đ¼Đ͵Đ⁰Đ͵ Đ͵Đ· Đ½Đ°Đ½Đ¾Đ¿Đ¾Ñ€Đ¾ÑˆĐºĐ° ĐĐ͵Đ¾Đ®ÑĐ͵Đа цĐ͵Ñ€Đ	₽ÐҋÐ1∕₂Ð	,Ñ ⊕ ¹∕₄еÑ,Đ
24	Laminar-turbulent transition of supersonic boundary layer on a cooled surface. Journal of Applied Mechanics and Technical Physics, 1981, 22, 310-315.	0.5	2
25	The role of the first and second modes in compressible boundary-layer transition. Journal of Applied Mechanics and Technical Physics, 1986, 26, 809-812.	0.5	2
26	Development of perturbations near a surface in a supersonic flow. Journal of Applied Mechanics and Technical Physics, 1989, 29, 827-832.	0.5	2
27	Stability of a high-speed boundary layer. Journal of Applied Mechanics and Technical Physics, 1989, 29, 832-835.	0.5	2
28	Experimental study of the evolution of perturbations in the supersonic wake behind a flat plate. Fluid Dynamics, 1996, 31, 618-621.	0.9	2
29	Ceramics prepared from silicon dioxide nanopowders. Glass Physics and Chemistry, 2008, 34, 512-514.	0.7	2
30	Preparation and properties of ceramics from a zirconia nanopowder. Glass Physics and Chemistry, 2009, 35, 538-540.	0.7	2
31	Analysis of Nickel Nanoclusters Size Distribution Synthesized from the Gas Phase. Journal of Computational and Theoretical Nanoscience, 2012, 9, 102-109.	0.4	2
32	ĐšĐµÑ€Đ°Đ¼Đ,ĐºĐ° Đ,Đ· Đ½Đ°Đ½Đ¾ĐįĐ¾Ñ€Đ¾ÑƊºĐ° ĐƊ,Đ¾ĐºÑĐ,Đа Ñ,Đ,Ñ,Đ°Đ½Đ°: ÑĐ¾Đ·ĐаĐị	∕₂ ᡚ ᡚμ Đ¼	4еÑ,Ð¾Đ€
33	Stability of a wake behind a flat plate in a supersonic flow. Journal of Applied Mechanics and Technical Physics, 1995, 36, 844-847.	0.5	1
34	Experimental determination of the dependence of starch looseness on the concentration of the silicon dioxide nanopowder (tarcosil) in it. Russian Journal of Non-Ferrous Metals, 2009, 50, 383-385.	0.6	1
35	Gas filtration and separation with nano-size ceramics. Thermophysics and Aeromechanics, 2011, 18, 273-280.	0.5	1

³⁶ Use of hot-wire anemometry for measuring the nanopowder flow velocity. Fluid Dynamics, 2012, 47, 0.9 1 281-287.

V		MID	LYSEN	IVO
ν	LAUI	IVIIK	LISEN	INU

#	Article	IF	CITATIONS
37	Creation and properties of ceramics from niobium oxide nanopowder. Glass Physics and Chemistry, 2016, 42, 522-524.	0.7	1
38	Influence of coating permeability and roughness on supersonic boundary layer stability. AIP Conference Proceedings, 2016, , .	0.4	1
39	ĐšĐµÑ€Đ°Đ¼Đ,ĐºĐ° Đ,Đ∙ Đ½Đ°Đ½Đ¾Đ;Đ¾Ñ€Đ¾Ñ℃ĐºĐ° Đ¾ĐºÑĐ,Đℋа Đ¼ĐµĐƊ, ÑĐ¾Đ∙ĐℋĐ½Đ½t	D°Ñ •SP6 -Ð4	4еÑ,оÐ⊕
40	Influence of Heavy Gas Blowing into the Wall Layer of Supersonic Boundary-Layer on Its Transition. Siberian Journal of Physics, 2017, 12, 50-56.	0.3	1
41	The Effect of Cooling on the Supersonic Boundary Layer Stability and Transition. , 1985, , 495-502.		1
42	On The Influence Of Porous Coating Thickness On Supersonic Boundary Layer Stability. Vestnik Novosibirskogo Gosudarstvennogo Universiteta SeriĢ: Fizika, 2015, 10, 41-47.	0.1	1
43	Theoretical and Experimental Investigation of the First Instability Mode Development in Supersonic Boundary Layers on Porous Coatings. Vestnik Novosibirskogo Gosudarstvennogo Universiteta Seriâ: Fizika, 2014, 9, 65-74.	0.1	1
44	КЕĐĐĐœĐ~КЕĐ~Đ— ĐĐĐĐžĐŸĐžĐĐžĐ"ĐšĐ•ĐžĐšĐ¡Đ~Đ"Đ•ĐœĐžĐ›Đ~БДЕĐĐ• Đ¡Đ'ĐžĐ™Đ¡Đ¢Đ'Đ•Đ~ f	СО Ð. əДŧ)ÐÐ⁻Е SPS-Ð
45	Production and Properties of Ceramic Made From Nickel Oxide Nanopowder. Glass and Ceramics (English Translation of Steklo I Keramika), 0, , .	0.6	1
46	Influence of deep cooling on the transition in a supersonic boundary layer. Fluid Dynamics, 1981, 16, 193-198.	0.9	0
47	Reversal of the laminar-turbulent transition of a boundary layer on a cooled surface. Fluid Dynamics, 1984, 19, 318-321.	0.9	0
48	Stability of a nonisothermal boundary layer in the presence of periodic perturbations of the exterior flow velocity. Fluid Dynamics, 1985, 19, 831-834.	0.9	0
49	Step-induced turbulence in a high-velocity boundary layer. Fluid Dynamics, 1989, 24, 150-153.	0.9	0
50	Effect of longitudinal magnetic field on high-speed boundary layer transition. Fluid Dynamics, 1992, 26, 622-624.	0.9	0
51	Title is missing!. Fluid Dynamics, 2002, 37, 568-575.	0.9	0
52	Interaction of a Supersonic Turbulent Wake with Acoustic Disturbances. Fluid Dynamics, 2003, 38, 878-881.	0.9	0
53	Stability of a supersonic flat-plate wake (Comparison of numerical and experimental results). Fluid Dynamics, 2008, 43, 869-872.	0.9	0
54	Investigation of the optical properties of aqueous solutions of silica nanopowders. Glass Physics and Chemistry, 2009, 35, 176-180.	0.7	0

VLADIMIR LYSENKO

#	Article	IF	CITATIONS
55	Compaction of nanopowders through electrophoretic precipitation. Glass Physics and Chemistry, 2010, 36, 679-681.	0.7	0
56	Stability of a nanopowder boundary-layer flow on a concave plate. Fluid Dynamics, 2012, 47, 346-350.	0.9	0
57	Different-Oxides Nanoceramics Microhardness. International Journal of Nanoscience, 2014, 13, 1440003.	0.7	0
58	Microhardness of Ceramic Obtained from Oxide Nanopowders by the Conventional and SPS Methods. Glass and Ceramics (English Translation of Steklo I Keramika), 2015, 71, 431-433.	0.6	0
59	Production and Properties of Ceramic Obtained From Cobalt Oxide Nanopowder. Glass and Ceramics (English Translation of Steklo I Keramika), 2017, 74, 126-127.	0.6	0
60	Experimental investigation of influence of tangential and normal heavy-gas blowing on the supersonic boundary-layer stability. AIP Conference Proceedings, 2018, , .	0.4	0
61	Fabrication and Properties of Ceramics Based on Chrome Oxide Nanopowder. Glass Physics and Chemistry, 2018, 44, 204-206.	0.7	0
62	Experimental study of influence of heavy gas injection into boundary layer on perforated model surface at Mach number 2 on its stability to controlled disturbances. AIP Conference Proceedings, 2021, , .	0.4	0
63	Effect of surface sublimation on boundary-layer stability. AIP Conference Proceedings, 2021, , .	0.4	0
64	Development of Disturbances in the Supersonic Boundary Layer under Helium Injection from the Surface. Siberian Journal of Physics, 2022, 16, 41-47.	0.3	0