Mohammad Gholinejad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7280822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetite (Fe ₃ O ₄) Nanoparticlesâ€Catalyzed Sonogashira– Hagihara Reactions in Ethylene Glycol under Ligandâ€Free Conditions. Advanced Synthesis and Catalysis, 2011, 353, 125-132.	4.3	135
2	Oneâ€Pot Thioetherification of Aryl Halides Using Thiourea and Alkyl Bromides Catalyzed by Copper(I) Iodide Free from Foul‧melling Thiols in Wet Polyethylene Glycol (PEG 200). Advanced Synthesis and Catalysis, 2010, 352, 119-124.	4.3	132
3	Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chemical Communications, 2012, 48, 8961.	4.1	129
4	Palladium nano-particles supported on agarose as efficient catalyst and bioorganic ligand for CC bond formation via solventless Mizorokia€"Heck reaction and Sonogashira–Hagihara reaction in polyethylene glycol (PEG 400). Journal of Molecular Catalysis A, 2012, 357, 154-161.	4.8	89
5	Synthesis and characterization of magnetic copper ferrite nanoparticles and their catalytic performance in one-pot odorless carbon-sulfur bond formation reactions. Journal of Molecular Catalysis A, 2014, 386, 20-27.	4.8	76
6	2-Aminophenyl diphenylphosphinite as a new ligand for heterogeneous palladium-catalyzed Heck–Mizoroki reactions in water in the absence of any organic co-solvent. Tetrahedron, 2009, 65, 7079-7084.	1.9	75
7	Copper nanoparticles supported on starch micro particles as a degradable heterogeneous catalyst for three-component coupling synthesis of propargylamines. RSC Advances, 2016, 6, 4983-4991.	3.6	73
8	Copper Nanoparticles Supported on Agarose as a Bioorganic and Degradable Polymer for Multicomponent Click Synthesis of 1,2,3-Triazoles under Low Copper Loading in Water. ACS Sustainable Chemistry and Engineering, 2014, 2, 2658-2665.	6.7	71
9	Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea. Applied Organometallic Chemistry, 2018, 32, e3984.	3.5	66
10	Palladium nanoparticles supported on agarose-functionalized magnetic nanoparticles of Fe ₃ O ₄ as a recyclable catalyst for C–C bond formation via Suzuki–Miyaura, Heck–Mizoroki and Sonogashira–Hagihara coupling reactions. RSC Advances, 2014, 4, 17060-17070.	3.6	65
11	Recyclable palladium-catalyzed Sonogashira–Hagihara coupling of aryl halides using 2-aminophenyl diphenylphosphinite ligand in neat water under copper-free condition. Journal of Molecular Catalysis A, 2010, 321, 110-116.	4.8	60
12	Graphene Quantum Dot Modified Fe ₃ O ₄ Nanoparticles Stabilize PdCu Nanoparticles for Enhanced Catalytic Activity in the Sonogashira Reaction. ChemCatChem, 2017, 9, 1442-1449.	3.7	59
13	Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room temperature click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. New Journal of Chemistry, 2018, 42, 3078-3086.	2.8	57
14	Palladium nanoparticles supported on magnetic copper ferrite nanoparticles: The synergistic effect of palladium and copper for cyanation of aryl halides with K4[Fe(CN)6]. Journal of Molecular Catalysis A, 2015, 397, 106-113.	4.8	56
15	Carbonâ€Đerived Supports for Palladium Nanoparticles as Catalysts for Carbon arbon Bonds Formation. ChemCatChem, 2019, 11, 1792-1823.	3.7	54
16	Iron Oxide Nanoparticles Modified with Carbon Quantum Nanodots for the Stabilization of Palladium Nanoparticles: An Efficient Catalyst for the Suzuki Reaction in Aqueous Media under Mild Conditions. ChemCatChem, 2016, 8, 441-447.	3.7	52
17	Agarose hydrogel as an effective bioorganic ligand and support for the stabilization of palladium nanoparticles. Application as a recyclable catalyst for Suzuki–Miyaura reaction in aqueous media. RSC Advances, 2011, 1, 1013.	3.6	48
18	A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: Application as a recoverable catalyst for Suzuki reaction in water. Molecular Catalysis, 2017, 433, 12-19.	2.0	47

#	Article	IF	CITATIONS
19	Applications of bimetallic PdCu catalysts. Catalysis Science and Technology, 2021, 11, 2652-2702.	4.1	47
20	Copper(I) iodide catalyzes odorless thioarylation of phenolic esters with alkyl derivatives using thiourea in wet polyethylene glycol (PEG 200). Journal of Molecular Catalysis A, 2013, 377, 190-196.	4.8	44
21	Magnetic nanoparticles supported oxime palladacycle as a highly efficient and separable catalyst for room temperature Suzuki–Miyaura coupling reaction in aqueous media. RSC Advances, 2015, 5, 49568-49576.	3.6	44
22	Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction. Journal of Catalysis, 2018, 363, 81-91.	6.2	44
23	Caffeine gold complex supported on magnetic nanoparticles as a green and high turnover frequency catalyst for room temperature A ³ coupling reaction in water. Applied Organometallic Chemistry, 2019, 33, e4760.	3.5	44
24	Palladium nanoparticles supported on agarose atalyzed Heck–Matsuda and Suzuki–Miyaura coupling reactions using aryl diazonium salts. Applied Organometallic Chemistry, 2013, 27, 19-22.	3.5	40
25	Palladium Deposited on Naturally Occurring Supports as a Powerful Catalyst for Carbon-Carbon Bond Formation Reactions. Current Organic Chemistry, 2015, 20, 327-348.	1.6	40
26	2-Aminophenyl diphenylphosphinite as an easily accessible ligand for heterogeneous palladium-catalyzed Suzuki–Miyaura reaction in water in the absence of any organic co-solvent. Journal of Organometallic Chemistry, 2010, 695, 2093-2097.	1.8	39
27	Assemblies of Copper Ferrite and Palladium Nanoparticles on Silica Microparticles as a Magnetically Recoverable Catalyst for Sonogashira Reaction under Mild Conditions. ChemPlusChem, 2015, 80, 973-979.	2.8	37
28	Palladium supported on phosphinite functionalized Fe ₃ O ₄ nanoparticles as a new magnetically separable catalyst for Suzuki–Miyaura coupling reactions in aqueous media. Catalysis Science and Technology, 2016, 6, 3117-3127.	4.1	36
29	Agarose functionalized phosphorus ligand for stabilization of small-sized palladium and copper nanoparticles: efficient heterogeneous catalyst for Sonogashira reaction. Tetrahedron, 2016, 72, 2491-2500.	1.9	34
30	Green synthesis of carbon quantum dots from vanillin for modification of magnetite nanoparticles and formation of palladium nanoparticles: Efficient catalyst for Suzuki reaction. Tetrahedron, 2017, 73, 5585-5592.	1.9	34
31	N, N ′-bis(2-pyridinecarboxamide)-1,2-benzene palladium complex as a new efficient catalyst for Suzuki–Miyaura coupling reaction under phosphane free conditions. Inorganica Chimica Acta, 2014, 421, 433-438.	2.4	33
32	Gold Nanoparticles Supported on Imidazoleâ€Modified Bentonite: Environmentally Benign Heterogeneous Catalyst for the Threeâ€Component Synthesis of Propargylamines in Water. ChemPlusChem, 2018, 83, 431-438.	2.8	31
33	Theranostic mesoporous silica nanoparticles made of multi-nuclear gold or carbon quantum dots particles serving as pH responsive drug delivery system. Microporous and Mesoporous Materials, 2022, 329, 111512.	4.4	31
34	Oneâ€₽ot Preparation of Propargylamines Catalyzed by Heterogeneous Copper Catalyst Supported on Periodic Mesoporous Organosilica with Ionic Liquid Framework. ChemPlusChem, 2015, 80, 1573-1579.	2.8	30
35	Palladium supported on bis(indolyl)methane functionalized magnetite nanoparticles as an efficient catalyst for copper-free Sonogashira-Hagihara reaction. Applied Catalysis A: General, 2016, 525, 31-40.	4.3	29
36	Co/Cu bimetallic ZIF as New heterogeneous catalyst for reduction of nitroarenes and dyes. Applied Organometallic Chemistry, 2020, 34, e5522.	3.5	28

#	Article	IF	CITATIONS
37	Phosphane-free Suzuki–Miyaura Coupling of Aryl Imidazolesulfonates with Arylboronic Acids and Potassium Aryltrifluoroborates under Aqueous Conditions. Chemistry Letters, 2011, 40, 907-909.	1.3	27
38	Magnetic crosslinked copoly(ionic liquid) nanohydrogel supported palladium nanoparticles as efficient catalysts for the selective aerobic oxidation of alcohols. Applied Catalysis A: General, 2018, 563, 185-195.	4.3	27
39	Gold Nanoparticles Supported on Polyacrylamide Containing a Phosphorus Ligand as an Efficient Heterogeneous Catalyst for Three-Component Synthesis of Propargylamines in Water. Synlett, 2016, 27, 1193-1201.	1.8	25
40	Iron oxide modified with pyridylâ€ŧriazole ligand for stabilization of gold nanoparticles: An efficient heterogeneous catalyst for A ³ coupling reaction in water. Applied Organometallic Chemistry, 2018, 32, e4454.	3.5	25
41	Active palladium catalyst supported by bulky diimine ligand catalyzed Suzuki–Miyauracoupling reaction in water under phosphaneâ€free and low catalyst loading conditions. Applied Organometallic Chemistry, 2014, 28, 221-224.	3.5	23
42	Design and synthesis of a new phosphinite-functionalized clay composite for the stabilization of palladium nanoparticles. Application as a recoverable catalyst for C–C bond formation reactions. RSC Advances, 2014, 4, 27674-27682.	3.6	23
43	Starch functionalized creatine for stabilization of gold nanoparticles: Efficient heterogeneous catalyst for the reduction of nitroarenes. Inorganica Chimica Acta, 2019, 495, 118965.	2.4	23
44	Oneâ€Pot Synthesis of Symmetrical Diaryl Trithiocarbonates through Copper atalyzed Coupling of Aryl Compounds, Sodium Sulfide, and Carbon Disulfide. European Journal of Organic Chemistry, 2013, 2013, 257-259.	2.4	22
45	Silica Microparticles Supported Gold and Copper Ferrite Nanoparticles: A Magnetically Recyclable Bimetallic Catalyst for Sonogashira Reaction. ChemistrySelect, 2016, 1, 384-390.	1.5	22
46	Copper-Catalyzed C–S Bond Formation via the Cleavage of C–O Bonds in the Presence of S8 as the Sulfur Source. Synthesis, 2017, 49, 5025-5038.	2.3	22
47	Synergistic Effects of ppm Levels of Palladium on Natural Clinochlore for Reduction of Nitroarenes. ChemSusChem, 2019, 12, 4240-4248.	6.8	22
48	4-Aminophenyldiphenylphosphinite (APDPP), a new heterogeneous and acid scavenger phosphinite — Conversion of alcohols, trimethylsilyl, and tetrahydropyranyl ethers to alkyl halides with halogens or N-halosuccinimides. Canadian Journal of Chemistry, 2006, 84, 1006-1012.	1.1	17
49	One-pot odorless thia-Michael reaction by copper ferrite nanoparticle-catalyzed reaction of elemental sulfur, aryl halides and electron-deficient alkenes. New Journal of Chemistry, 2015, 39, 5953-5959.	2.8	17
50	Clinochloreâ€Supported Copper Nanoparticles as Green and Efficient Catalyst for Roomâ€Temperature Synthesis of 1,2,3â€Triazoles in Water. ChemistrySelect, 2019, 4, 3151-3160.	1.5	15
51	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	3.5	15
52	Oneâ€Pot Copperâ€Catalysed Thioetherification of Aryl Halides Using Alcohols and Lawesson's Reagent in Diglyme. European Journal of Organic Chemistry, 2015, 2015, 4162-4167.	2.4	14
53	An Efficient A ³ Coupling Catalyst Based on a Silver Complex Bearing Nâ€Heterocyclic Carbene and Homoscorpionate Bis(3â€methylâ€mercaptoimidazolyl)borate Ligands. ChemistrySelect, 2019, 4, 9268-9273.	1.5	14
54	Novel oxime-palladacycle supported on clay composite as an efficient heterogeneous catalyst for Sonogashira reaction. Inorganica Chimica Acta, 2018, 483, 262-270.	2.4	13

#	Article	IF	CITATIONS
55	2-(diphenylphosphino)pyridine platinum (I) and palladium (I) complex as an efficient binuclear catalyst for Suzuki-Miyaura coupling reaction in water under mild reaction conditions. Journal of Organometallic Chemistry, 2015, 796, 3-10.	1.8	12
56	1-Butyl-3-methyl-2-(diphenylphosphino)imidazalolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water. Journal of Organometallic Chemistry, 2019, 901, 120941.	1.8	12
57	Zeolitic imidazolate frameworks-67 (ZIF-67) supported PdCu nanoparticles for enhanced catalytic activity in Sonogashira-Hagihara and nitro group reduction under mild conditions. Molecular Catalysis, 2022, 518, 112093.	2.0	12
58	Palladium Nanoparticles on a Creatineâ€Modified Bentonite Support: An Efficient and Sustainable Catalyst for Nitroarene Reduction. ChemPlusChem, 2019, 84, 1122-1129.	2.8	11
59	Suzuki coupling reactions catalyzed by Schiff base supported palladium complexes bearing the vitamin B6 cofactor. Molecular Catalysis, 2021, 505, 111528.	2.0	11
60	4-Aminophenyl Diphenylphosphinite (APDPP) as a Heterogeneous and Acid Scavenger Reagent for Thiocyantion or Isothiocyanation of Alcohols and Protected Alcohols. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 2010-2019.	1.6	10
61	Ionic liquid modified carbon nanotube supported palladium nanoparticles for efficient Sonogashira-Hagihara reaction. Journal of Organometallic Chemistry, 2022, 963, 122295.	1.8	10
62	Novel Water Dispersible and Magnetically Recoverable Palladium Nano Catalyst for Roomâ€Temperature Suzukiâ€Miyaura Coupling Reaction. ChemistrySelect, 2021, 6, 13906-13917.	1.5	10
63	Tandem oxidation–Wittig reaction using nanocrystalline barium manganate (BaMnO4); an improved one-pot protocol. Tetrahedron Letters, 2016, 57, 3773-3775.	1.4	9
64	Human hair catalyzed selective reduction of nitroarenes to amines. Canadian Journal of Chemistry, 2020, 98, 244-249.	1.1	9
65	Low-amount palladium supported on Fe-Cu MOF: Synergetic effect between Pd, Cu and Fe in Sonogashira-Hagihara coupling reaction and reduction of organic dyes. Molecular Catalysis, 2022, 522, 112199.	2.0	8
66	The copper(II) complexes with tetradentate Schiff base ligands: Synthesis, crystal structures, and computational studies. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2013, 39, 209-213.	1.0	6
67	Synthesis of 5-heptadecyl- and 5-heptadec-8-enyl substituted 4-amino-1,2,4-triazole-3-thiol and 1,3,4-oxadiazole-2-thione from (Z)-octadec-9-enoic acid: preparation of Palladium(II) complexes and evaluation of their antimicrobial activity. Monatshefte FA1/4r Chemie, 2020, 151, 173-180.	1.8	6
68	Efficient Method for the Synthesis of Propargylamines Using a Biomaterial Containing Copper Nanoparticles as Impressive and Reusable Nanocatalyst. Letters in Organic Chemistry, 2018, 15, .	0.5	6
69	Photocatalytic activity enhancement of carbonâ€doped <scp>g ₃N₄</scp> by synthesis of nanocomposite with <scp>Ag₂O</scp> and <scp>αâ€Fe₂O₃. Journal of the Chinese Chemical Society, 2021, 68, 2118-2131</scp>	1.4	5
70	Recyclable nickel catalysed Suzuki–Miyaura reaction in the presence of polyethyleneimine under phosphine-free conditions in ethylene glycol#. Journal of Chemical Sciences, 2011, 123, 485-489.	1.5	4
71	Enhanced catalytic activity of natural hematite-supported ppm levels of Pd in nitroarenes reduction. Journal of the Iranian Chemical Society, 2020, 17, 2033-2043.	2.2	4
72	Application of imidazole modified clinochlore for adsorption of ibuprofen residues from polluted water: preparation, characterization, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, 2022, 19, 109-120.	2.2	3

#	Article	IF	CITATIONS
73	Synthesis, characterization, crystal structure and theoretical studies of new chiral Schiff base (E)-4-hydroxy[(1-phenylethyl)iminomethyl]benzyne. Research on Chemical Intermediates, 2015, 41, 1635-1645.	2.7	2
74	Heterocyclic thiolates and phosphine ligands in copper atalyzed synthesis of propargylamines in water. Applied Organometallic Chemistry, 2021, 35, e6180.	3.5	2
75	Visible photosensitized sonogashira-hagihara coupling through in situ prepared palladium catalyst in N,N-dimethylformamide under copper and amine-free additives. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114002.	3.9	2
76	Hyperbranched polymer immobilized palladium nanoparticles as an efficient and reusable catalyst for cyanation of aryl halides and reduction of nitroarenes. Journal of Organometallic Chemistry, 2022, 970-971, 122359.	1.8	2
77	Synthesis, characterization and computational studies of zinc(II)-halide complexes with a bidentate schiff base ligand (2,5-MeO-ba)2En: The crystal structure of (2,5-MeO-ba)2En. Journal of Structural Chemistry, 2013, 54, 766-773.	1.0	1
78	Gold Nanoparticles Supported on Polyacrylamide Containing a Phosphorus Ligand as an Efficient Heterogeneous Catalyst for Three-Component Synthesis of Propargylamines in Water. Synlett, 2016, 27, e7-e7.	1.8	1
79	DABCO-based ionic liquid-modified magnetic nanoparticles supported gold as an efficient catalyst for A3 coupling reaction in water. Journal of the Iranian Chemical Society, 0, , 1.	2.2	1
80	Exploring Unusual Effects of the Ring Substituents in the Type â…; Reaction with TDâ€ĐFT and DFT. Photochemistry and Photobiology, 2021, 97, 947-954.	2.5	0