
Giuseppe Manfroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7279854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution from a Natural Flavones Nucleus to Obtain 2-(4-Propoxyphenyl)quinoline Derivatives As Potent Inhibitors of the <i>S. aureus</i> NorA Efflux Pump. Journal of Medicinal Chemistry, 2011, 54, 5722-5736.	2.9	102
2	Pyrazolo[4,3- <i>c</i>][1,2]benzothiazines 5,5-Dioxide: A Promising New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 3568-3572.	2.9	82
3	A Broad Anti-influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein–Basic Protein 1 (PA-PB1) Subunits. Journal of Medicinal Chemistry, 2015, 58, 3830-3842.	2.9	81
4	Synthesis and Anti-BVDV Activity of Acridones As New Potential Antiviral Agents1. Journal of Medicinal Chemistry, 2006, 49, 2621-2627.	2.9	71
5	Discovery of Novel Inhibitors of the NorA Multidrug Transporter of <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2011, 54, 354-365.	2.9	67
6	Pharmacophore-Based Repositioning of Approved Drugs as Novel <i>Staphylococcus aureus</i> NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 1598-1604.	2.9	59
7	Structureâ^'Activity Relationship Study on Anti-HIV 6-Desfluoroquinolones. Journal of Medicinal Chemistry, 2008, 51, 5454-5458.	2.9	56
8	Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor. Journal of Medicinal Chemistry, 2009, 52, 3354-3365.	2.9	54
9	Structural Investigation of Cycloheptathiophene-3-carboxamide Derivatives Targeting Influenza Virus Polymerase Assembly. Journal of Medicinal Chemistry, 2013, 56, 10118-10131.	2.9	51
10	Re-evolution of the 2-Phenylquinolines: Ligand-Based Design, Synthesis, and Biological Evaluation of a Potent New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors to Combat Antimicrobial Resistance. Journal of Medicinal Chemistry, 2013, 56, 4975-4989.	2.9	51
11	Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Research, 2016, 134, 226-235.	1.9	49
12	2-Phenylquinoline <i>S. aureus</i> NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction. Journal of Medicinal Chemistry, 2018, 61, 7827-7848.	2.9	46
13	Structure Modifications of 6-Aminoquinolones with Potent Anti-HIV Activity1. Journal of Medicinal Chemistry, 2004, 47, 5567-5578.	2.9	45
14	Lipid nanoparticles for brain targeting III. Long-term stability and in vivo toxicity. International Journal of Pharmaceutics, 2013, 454, 316-323.	2.6	45
15	The Versatile Nature of the 6-Aminoquinolone Scaffold: Identification of Submicromolar Hepatitis C Virus NS5B Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1952-1963.	2.9	43
16	Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorganic and Medicinal Chemistry, 2012, 20, 866-876.	1.4	41
17	Structure-Based Discovery of Pyrazolobenzothiazine Derivatives As Inhibitors of Hepatitis C Virus Replication. Journal of Medicinal Chemistry, 2013, 56, 2270-2282.	2.9	40
18	Allosteric inhibition of the hepatitis C virus NS5B polymerase: <i>in silico</i> strategies for drug discovery and development. Future Medicinal Chemistry, 2011, 3, 1027-1055.	1.1	39

#	Article	IF	CITATIONS
19	Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity. European Journal of Medicinal Chemistry, 2017, 138, 128-139.	2.6	38
20	Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against <i>Escherichia coli</i> . PeerJ, 2017, 5, e3168.	0.9	38
21	New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3247-3262.	2.9	35
22	Investigation on the effect of known potent S. aureus NorA efflux pump inhibitors on the staphylococcal biofilm formation. RSC Advances, 2017, 7, 37007-37014.	1.7	33
23	Studies on anti-HIV quinolones: New insights on the C-6 position. Bioorganic and Medicinal Chemistry, 2009, 17, 667-674.	1.4	32
24	Computerâ€Aided Design, Synthesis and Validation of 2â€Phenylquinazolinone Fragments as CDK9 Inhibitors with Antiâ€HIVâ€I Tatâ€Mediated Transcription Activity. ChemMedChem, 2013, 8, 1941-1953.	1.6	32
25	Structural Investigation of the Naphthyridone Scaffold: Identification of a 1,6â€Naphthyridone Derivative with Potent and Selective Antiâ€HIV Activity. ChemMedChem, 2011, 6, 1249-1257.	1.6	30
26	Novel 1,4-Benzothiazine Derivatives as Large Conductance Ca2+-Activated Potassium Channel Openers. Journal of Medicinal Chemistry, 2008, 51, 5085-5092.	2.9	29
27	Searching for Novel Inhibitors of the <i>S.â€aureus</i> NorA Efflux Pump: Synthesis and Biological Evaluation of the 3â€Phenylâ€1,4â€benzothiazine Analogues. ChemMedChem, 2017, 12, 1293-1302.	1.6	28
28	Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. European Journal of Medicinal Chemistry, 2017, 140, 321-330.	2.6	28
29	Pyridobenzothiazolones Exert Potent Anti-Dengue Activity by Hampering Multiple Functions of NS5 Polymerase. ACS Medicinal Chemistry Letters, 2020, 11, 773-782.	1.3	28
30	Studies of Antiâ€HIV Transcription Inhibitor Quinolones: Identification of Potent N1â€Vinyl Derivatives. ChemMedChem, 2010, 5, 1880-1892.	1.6	26
31	Broadâ€5pectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem, 2020, 15, 2391-2419.	1.6	25
32	Discovery of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole as a novel anti-hepatitis C virus targeting scaffold. European Journal of Medicinal Chemistry, 2015, 96, 250-258.	2.6	24
33	Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. European Journal of Medicinal Chemistry, 2018, 143, 1667-1676.	2.6	24
34	Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Research, 2019, 167, 6-12.	1.9	24
35	1,2,4-Triazolo[1,5-a]pyrimidines as a Novel Class of Inhibitors of the HIV-1 Reverse Transcriptase-Associated Ribonuclease H Activity. Molecules, 2020, 25, 1183.	1.7	23
36	Synthesis and biological evaluation of 2-phenylquinolones targeted at Tat/TAR recognition. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 714-717.	1.0	21

#	Article	IF	CITATIONS
37	Boosting Effect of 2-Phenylquinoline Efflux Inhibitors in Combination with Macrolides against <i>Mycobacterium smegmatis</i> and <i>Mycobacterium avium</i> . ACS Infectious Diseases, 2015, 1, 593-603.	1.8	21
38	1,4-Benzothiazine ATP-Sensitive Potassium Channel Openers: Modifications at the C-2 and C-6 Positions. Journal of Medicinal Chemistry, 2013, 56, 4718-4728.	2.9	20
39	Enantioresolution, stereochemical characterization and biological activity of a chiral large-conductance calcium-activated potassium channel opener. Journal of Chromatography A, 2014, 1363, 162-168.	1.8	20
40	A Comprehensive Structural Overview of p38α Mitogenâ€Activated Protein Kinase in Complex with ATPâ€Site and Nonâ€ATPâ€Site Binders. ChemMedChem, 2018, 13, 7-14.	1.6	20
41	Modulating microRNA Processing: Enoxacin, the Progenitor of a New Class of Drugs. Journal of Medicinal Chemistry, 2020, 63, 12275-12289.	2.9	20
42	Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorganic and Medicinal Chemistry, 2014, 22, 4658-4666.	1.4	19
43	Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position. European Journal of Medicinal Chemistry, 2018, 155, 428-433.	2.6	19
44	A Comprehensive Structural Overview of p38α MAPK in Complex with Typeâ€I Inhibitors. ChemMedChem, 2015, 10, 957-969.	1.6	17
45	Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and inÂvitro validation. European Journal of Medicinal Chemistry, 2019, 182, 111624.	2.6	17
46	Comprehensive response to Usutu virus following first isolation in blood donors in the Friuli Venezia Giulia region of Italy: Development of recombinant NS1-based serology and sensitivity to antiviral drugs. PLoS Neglected Tropical Diseases, 2020, 14, e0008156.	1.3	17
47	Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. European Journal of Medicinal Chemistry, 2021, 209, 112944.	2.6	17
48	Accounting for Target Flexibility and Water Molecules by Docking to Ensembles of Target Structures: The HCV NS5B Palm Site I Inhibitors Case Study. Journal of Chemical Information and Modeling, 2014, 54, 481-497.	2.5	16
49	From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 55-74.	2.5	16
50	Studies on Cycloheptathiopheneâ€3â€carboxamide Derivatives as Allosteric HIVâ€1 Ribonucleaseâ€H Inhibitors ChemMedChem, 2016, 11, 1709-1720.	· 1.6	15
51	The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogenâ€Activated Protein Kinase Inhibitors. Chemical Biology and Drug Design, 2015, 86, 531-545.	1.5	14
52	C-2 phenyl replacements to obtain potent quinoline-based <i>Staphylococcus aureus</i> NorA inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 584-597.	2.5	13
53	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	2.6	12
54	Advantageous Use of Ionic Liquids for the Synthesis of Pharmaceutically Relevant Quinolones. European Journal of Organic Chemistry, 2018, 2018, 2977-2983.	1.2	10

GIUSEPPE MANFRONI

#	Article	IF	CITATIONS
55	Modifications on C6 and C7 Positions of 3-Phenylquinolone Efflux Pump Inhibitors Led to Potent and Safe Antimycobacterial Treatment Adjuvants. ACS Infectious Diseases, 2019, 5, 982-1000.	1.8	10
56	Discovery of 2-Phenylquinolines with Broad-Spectrum Anti-coronavirus Activity. ACS Medicinal Chemistry Letters, 2022, 13, 855-864.	1.3	10
57	Ethyl 1,8-Naphthyridone-3-carboxylates Downregulate Human Papillomavirus-16 E6 and E7 Oncogene Expression. Journal of Medicinal Chemistry, 2014, 57, 5649-5663.	2.9	9
58	From Quinoline to Quinazolineâ€Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search. ChemMedChem, 2021, 16, 3044-3059.	1.6	9
59	Structural Modifications of the Quinolin-4-yloxy Core to Obtain New Staphylococcus aureus NorA Inhibitors. International Journal of Molecular Sciences, 2020, 21, 7037.	1.8	8
60	Bicyclic octahydrocyclohepta[b]pyrrol-4(1 H)one derivatives as novel selective anti-hepatitis C virus agents. European Journal of Medicinal Chemistry, 2016, 122, 319-325.	2.6	6
61	Co-crystal structure determination and cellular evaluation of 1,4-dihydropyrazolo[4,3-c] [1,2] benzothiazine 5,5-dioxide p38α MAPK inhibitors. Biochemical and Biophysical Research Communications, 2019, 511, 579-586.	1.0	6
62	Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. European Journal of Medicinal Chemistry, 2021, 210, 112992.	2.6	6
63	N-Benzoyl-N-methylsulfonyl anthranilates: unexpected cyclization reaction to 4-alkoxy-2,1-benzothiazines. Arkivoc, 2011, 2011, 165-176.	0.3	5
64	New Insights on KCa3.1 Channel Modulation. Current Pharmaceutical Design, 2020, 26, 2096-2101.	0.9	4
65	Virucidal Activity of the Pyridobenzothiazolone Derivative HeE1-17Y against Enveloped RNA Viruses. Viruses, 2022, 14, 1157.	1.5	4
66	Broad-Spectrum Anti-Flavivirus Activity and Chemistry of Compounds Containing Sulfur and Oxygen Chalcogens. Current Medicinal Chemistry, 2023, 30, 2396-2420.	1.2	3
67	Synthesis of 2-(Arylamino)ethanethiols via Lewis Acid Catalyzed Aminolysis of 2,2-Dimethylthiirane as Precursors of the 1,4-Benzothiazine Nucleus. Synthesis, 2009, 2009, 1513-1519.	1.2	2
68	Design and Synthesis of WM5 Analogues as HIV-1 TAR RNA Binders. Open Medicinal Chemistry Journal, 2019, 13, 16-28.	0.9	2
69	Targeting miRNA dysregulation with small molecules: the case of enoxacin. Future Medicinal Chemistry, 2021, 13, 1245-1248.	1.1	1
70	Pyridobenzothiazolones as anti-flavivirus agents: Impact on Zika virus. , 2021, , 349-358.		0