

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7279775/publications.pdf Version: 2024-02-01

OINCL

#	Article	IF	CITATIONS
1	Metal–Organic Frameworkâ€Based Sulfur‣oaded Materials. Energy and Environmental Materials, 2022, 5, 215-230.	7.3	24
2	Acetylene/Vinyleneâ€Bridged Ï€â€Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. ChemSusChem, 2022, 15, .	3.6	9
3	Effective Approaches for Designing Stable M–N <i>_x</i> /C Oxygenâ€Reduction Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells. Advanced Materials, 2022, 34, e2200595.	11.1	38
4	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	102
5	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie, 2022, 134, .	1.6	22
6	Correlation between Potassium-Ion Storage Mechanism and Local Structural Evolution in Hard Carbon Materials. Chemistry of Materials, 2022, 34, 4202-4211.	3.2	19
7	Molybdenumâ€doped ordered L1 ₀ â€PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat, 2022, 2, 347-356.	7.8	13
8	Interstitial B-Doping in Pt Lattice to Upgrade Oxygen Electroreduction Performance. ACS Catalysis, 2022, 12, 8848-8856.	5.5	17
9	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Science China Materials, 2021, 64, 137-148.	3.5	55
10	NiO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage. Journal of Colloid and Interface Science, 2021, 581, 709-718.	5.0	44
11	Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Research, 2021, 14, 1405-1412.	5.8	65
12	Defect-free-induced Na ⁺ disordering in electrode materials. Energy and Environmental Science, 2021, 14, 3130-3140.	15.6	62
13	Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO ₂ reduction. Chemical Communications, 2021, 57, 1839-1854.	2.2	23
14	Hard carbon spheres prepared by a modified Stöber method as anode material for high-performance potassium-ion batteries. RSC Advances, 2021, 11, 14883-14890.	1.7	6
15	Boosting Li/Na storage performance of graphite by defect engineering. RSC Advances, 2021, 11, 22297-22304.	1.7	3
16	An effective dual-modification strategy to enhance the performance of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ cathode for Li-ion batteries. Nanoscale, 2021, 13, 4670-4677.	2.8	17
17	Synthesis of an <i>in situ</i> core–shell interlink ultrathin-nanosheet Fe@Fe _x NiO/Ni@Ni _y CoP nanohybrid by scalable layer-to-layer assembly strategy as an ultra-highly efficient bifunctional electrocatalyst for alkaline/neutral water reduction/oxidation. Journal of Materials Chemistry A, 2021, 9, 5833-5847.	5.2	17

Some MoS₂-Based Materials for Sodium-Ion Battery., 2021, , 111-126.

0

#	Article	IF	CITATIONS
19	Yolk@Shell Structured MnS@Nitrogen-Doped Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3487-3494.	2.5	16
20	Weakening Intermediate Bindings on CuPd/Pd Core/shell Nanoparticles to Achieve Ptâ€Like Bifunctional Activity for Hydrogen Evolution and Oxygen Reduction Reactions. Advanced Functional Materials, 2021, 31, 2100883.	7.8	68
21	Realization of a High-Voltage and High-Rate Nickel-Rich NCM Cathode Material for LIBs by Co and Ti Dual Modification. ACS Applied Materials & Interfaces, 2021, 13, 17707-17716.	4.0	64
22	Unveiling Charge Dynamics in Acetylene-Bridged Donorâ'ï€â€"Acceptor Covalent Triazine Framework for Enhanced Photoredox Catalysis. ACS Catalysis, 2021, 11, 7429-7441.	5.5	75
23	Local Structures of Soft Carbon and Electrochemical Performance of Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28261-28269.	4.0	17
24	Constructing Co–N–C Catalyst via a Double Crosslinking Hydrogel Strategy for Enhanced Oxygen Reduction Catalysis in Fuel Cells. Small, 2021, 17, e2100735.	5.2	29
25	Constructing ultrathin FeS/FeO H@Fe nano-sheets for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 594, 575-583.	5.0	27
26	Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS Applied Materials & Interfaces, 2021, 13, 39291-39303.	4.0	55
27	Constructing Double-Layer CoP/CeO ₂ –FeO _{<i>x</i>} H Hybrid Catalysts for Alkaline and Neutral Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 11981-11990.	3.2	13
28	A High Rate and Stable Hybrid Li/Naâ€lon Battery Based on a Hydrated Molten Inorganic Salt Electrolyte. Small, 2021, 17, e2101650.	5.2	12
29	Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Ce through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.	lls 11.1	94
30	Sublimated Seâ€Induced Formation of Dualâ€Conductive Surface Layers for Highâ€Performance Niâ€Rich Layered Cathodes. ChemElectroChem, 2021, 8, 4207-4217.	1.7	7
31	Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution. Processes, 2021, 9, 1622.	1.3	1
32	Aqueous Phase Approach to Au-Modified Pt–Co/C toward Efficient and Durable Cathode Catalyst of PEMFCs. Journal of Physical Chemistry C, 2021, 125, 23821-23829.	1.5	6
33	Construction of an N-Decorated Carbon-Encapsulated W ₂ C/WP Heterostructure as an Efficient Electrocatalyst for Hydrogen Evolution in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2021, 13, 53955-53964.	4.0	20
34	Assembling amorphous (Fe-Ni)Co -OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Applied Catalysis B: Environmental, 2020, 263, 118338.	10.8	73
35	Generating highly active Ni11(HPO3)8(OH)6/Mn3O4 catalyst for electrocatalytic hydrogen evolution reaction by electrochemical activation. Journal of Colloid and Interface Science, 2020, 560, 714-721.	5.0	14
36	Accelerated polysulfide conversion on hierarchical porous vanadium–nitrogen–carbon for advanced lithium–sulfur batteries. Nanoscale, 2020, 12, 584-590.	2.8	26

#	Article	IF	CITATIONS
37	Atomicâ€Level Feâ€Nâ€C Coupled with Fe ₃ Câ€Fe Nanocomposites in Carbon Matrixes as Highâ€Efficiency Bifunctional Oxygen Catalysts. Small, 2020, 16, e1906057.	5.2	90
38	Core@shell Sb@Sb ₂ O ₃ nanoparticles anchored on 3D nitrogen-doped carbon nanosheets as advanced anode materials for Li-ion batteries. Nanoscale Advances, 2020, 2, 5578-5583.	2.2	9
39	Local Structural Changes and Inductive Effects on Ion Conduction in Antiperovskite Solid Electrolytes. Chemistry of Materials, 2020, 32, 8827-8835.	3.2	19
40	Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. RSC Advances, 2020, 10, 27033-27041.	1.7	31
41	Bifunctional Atomically Dispersed Mo–N ₂ /C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 10115-10126.	7.3	106
42	Defectâ€Rich Copperâ€doped Ruthenium Hollow Nanoparticles for Efficient Hydrogen Evolution Electrocatalysis in Alkaline Electrolyte. Chemistry - an Asian Journal, 2020, 15, 2868-2872.	1.7	6
43	Oxygen Reduction: Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode (Adv. Energy Mater. 29/2020). Advanced Energy Materials, 2020, 10, 2070124.	10.2	5
44	Promoting C ₂₊ Production from Electrochemical CO ₂ Reduction on Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. ACS Sustainable Chemistry and Engineering, 2020, 8, 15223-15229.	3.2	51
45	Self-Optimized Ligand Effect in L1 ₂ -PtPdFe Intermetallic for Efficient and Stable Alkaline Hydrogen Oxidation Reaction. ACS Catalysis, 2020, 10, 15207-15216.	5.5	64
46	Visible-Light-Responsive Anthraquinone Functionalized Covalent Organic Frameworks for Metal-Free Selective Oxidation of Sulfides: Effects of Morphology and Structure. ACS Catalysis, 2020, 10, 6664-6675.	5.5	120
47	Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2020, 12, 31503-31513.	4.0	78
48	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.	10.2	112
49	Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorganic Chemistry Frontiers, 2020, 7, 2089-2096.	3.0	54
50	Bimetallic Co/Mo ₂ C Nanoparticles Embedded in 3D Hierarchical Nâ€doped Carbon Heterostructures as Highly Efficient Electrocatalysts for Water Splitting. ChemCatChem, 2020, 12, 3737-3745.	1.8	26
51	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	10.2	162
52	Ultrathin and defect-rich intermetallic Pd ₂ Sn nanosheets for efficient oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15665-15669.	5.2	54
53	In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29985-29992.	4.0	39
54	Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie, 2019, 131, 15617-15623.	1.6	30

#	Article	IF	CITATIONS
55	Tungstenâ€Doped L1 ₀ â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.	7.2	150
56	Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Nanoscale, 2019, 11, 17376-17383.	2.8	46
57	Improving the Structure Stability of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ by Surface Perovskite-like La ₂ Ni _{0.5} Li _{0.5} O ₄ Self-Assembling and Subsurface La ³⁺ Doping, ACS Applied Materials & amp: Interfaces, 2019, 11, 36751-36762.	4.0	59
58	Improving activity of Ni3P/Mn hybrid film via electrochemical tuning for water splitting under simulated industrial environment. Electrochimica Acta, 2019, 324, 134897.	2.6	17
59	Smart Yolk/Shell ZIF-67@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5027-5033.	3.2	119
60	Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning. Nanomaterials, 2019, 9, 127.	1.9	82
61	One-step controllable synthesis of amorphous (Ni-Fe)S /NiFe(OH) hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Applied Catalysis B: Environmental, 2019, 246, 337-348.	10.8	169
62	Self-Supported Ni/NiSP _{<i>x</i>} Microdendrite Structure for Highly Efficient and Stable Overall Water Splitting in Simulated Industrial Environment. ACS Sustainable Chemistry and Engineering, 2019, 7, 11778-11786.	3.2	18
63	A novel strategy for the synthesis of highly stable ternary SiO _x composites for Li-ion-battery anodes. Journal of Materials Chemistry A, 2019, 7, 15969-15974.	5.2	112
64	Functionalization of biodegradable PLA nonwoven fabrics as super-wetting membranes for simultaneous efficient dye and oil/water separation. New Journal of Chemistry, 2019, 43, 9696-9705.	1.4	13
65	3D hierarchical porous Co _{1â^'x} S@C derived from a ZIF-67 single crystals self-assembling superstructure with superior pseudocapacitance. Journal of Materials Chemistry A, 2019, 7, 17248-17253.	5.2	34
66	Subâ€6 nm Fully Ordered <i>L</i> 1 ₀ â€Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy Materials, 2019, 9, 1803771.	10.2	127
67	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. ACS Sustainable Chemistry and Engineering, 2019, 7, 8986-8992.	3.2	48
68	Synthesis of Co _{0.5} Mn _{0.1} Ni _{0.4} C ₂ O ₄ â< <i>n</i> H <sub Micropolyhedrons: Multimetal Synergy for Highâ€Performance Glucose Oxidation Catalysis. Chemistry - an Asian Journal, 2019, 14, 2259-2265.</sub 	>2(1.7	D ₁₄
69	Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries: Na _{1.5} Ti _{1.5} Fe _{0.5} (PO ₄) ₃ . Journal of Materials Chemistry A, 2019, 7, 24953-24963.	5.2	10
70	Nickel Oxide/Graphene Composites: Synthesis and Applications. Chemistry - A European Journal, 2019, 25, 2141-2160.	1.7	44
71	Interface Engineering of Crystalline/Amorphous Co ₂ P/CoMoP _{<i>x</i>} Nanostructure as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2437-2445.	3.2	51
72	Use of Ce to Reinforce the Interface of Niâ€Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Lithiumâ€Ion Batteries under High Operating Voltage. ChemSusChem, 2019, 12, 935-943.	3.6	113

#	Article	IF	CITATIONS
73	F-Doped NaTi ₂ (PO ₄) ₃ /C Nanocomposite as a High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3116-3124.	4.0	52
74	Novel Cerium Hexacyanoferrate(II) as Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 187-191.	2.5	26
75	Pristine Transitionâ€Metalâ€Based Metalâ€Organic Frameworks for Electrocatalysis. ChemElectroChem, 2019, 6, 1273-1299.	1.7	78
76	Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (II). International Journal of Biological Macromolecules, 2019, 126, 107-117.	3.6	77
77	Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment. Journal of Cleaner Production, 2019, 211, 1463-1470.	4.6	41
78	Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as Highâ€Performance Cathode for Naâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803158.	10.2	93
79	New P2-Type Honeycomb-Layered Sodium-Ion Conductor: Na ₂ Mg ₂ TeO ₆ . ACS Applied Materials & Interfaces, 2018, 10, 15760-15766.	4.0	44
80	Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium–sulfur battery cathodes. Nanoscale, 2018, 10, 5634-5641.	2.8	74
81	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	6.6	312
82	Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 495-502.	2.5	28
83	Fabrication of 3D porous poly(lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Materials and Design, 2018, 142, 1-10.	3.3	73
84	Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 11-28.	3.0	169
85	Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydrate Polymers, 2018, 180, 104-111.	5.1	101
86	A P2â€Type Layered Superionic Conductor Gaâ€Doped Na ₂ Zn ₂ TeO ₆ for Allâ€Solidâ€State Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1057-1061.	1.7	42
87	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie, 2018, 130, 460-464.	1.6	2
88	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Đoped Graphene. Angewandte Chemie - International Edition, 2018, 57, 451-455.	7.2	47
89	One-pot formic acid dehydrogenation and synthesis of benzene-fused heterocycles over reusable AgPd/WO _{2.72} nanocatalyst. Journal of Materials Chemistry A, 2018, 6, 23766-23772.	5.2	29
90	Facile Synthesis of Zn/Nâ€doped CuO and Their Application in Oxygen Evolution Reaction. ChemistrySelect, 2018, 3, 12205-12209.	0.7	2

#	Article	IF	CITATIONS
91	Ultrathin Nanosheet Niâ€Metal Organic Framework Assemblies for Highâ€Efficiency Ascorbic Acid Electrocatalysis. ChemElectroChem, 2018, 5, 3859-3865.	1.7	37
92	Boosting Tunable Syngas Formation via Electrochemical CO ₂ Reduction on Cu/In ₂ O ₃ Core/Shell Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 36996-37004.	4.0	106
93	Ultrathin Nanobelts as an Excellent Bifunctional Oxygen Catalyst: Insight into the Subtle Changes in Structure and Synergistic Effects of Bimetallic Metal–Organic Framework. Small Methods, 2018, 2, 1800240.	4.6	73
94	3D porous poly(ε-caprolactone)/58S bioactive glass–sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering. Materials and Design, 2018, 160, 1-8.	3.3	46
95	Recent Progress in Some Amorphous Materials for Supercapacitors. Small, 2018, 14, e1800426.	5.2	140
96	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
97	A versatile porous 3D polyurethane/polyacrylic acid (PU-PAA) membrane for one-step multiple contaminants water purification. Journal of Membrane Science, 2018, 563, 191-198.	4.1	16
98	Atomically Dispersed Feâ€N <i>_x</i> /C Electrocatalyst Boosts Oxygen Catalysis via a New Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.	10.2	216
99	One-step electrodeposition of a hierarchically structured S-doped NiCo film as a highly-efficient electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 15238-15248.	2.8	52
100	Synthesis and Progress of New Oxygenâ€Vacant Electrode Materials for Highâ€Energy Rechargeable Battery Applications. Small, 2018, 14, e1802193.	5.2	66
101	Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2018, 11, 2467-2475.	15.6	91
102	Intelligent self-healing superhydrophobic modification of cotton fabrics via surface-initiated ARGET ATRP of styrene. Chemical Engineering Journal, 2017, 323, 134-142.	6.6	67
103	One-Step Synthesis of Cationic Hydrogel for Efficient Dye Adsorption and Its Second Use for Emulsified Oil Separation. ACS Sustainable Chemistry and Engineering, 2017, 5, 5598-5607.	3.2	109
104	A novel fixing method for Mg-based specimens used in the in-vitro immersion test. Anti-Corrosion Methods and Materials, 2017, 64, 405-408.	0.6	0
105	Tuning Sn-Catalysis for Electrochemical Reduction of CO ₂ to CO via the Core/Shell Cu/SnO ₂ Structure. Journal of the American Chemical Society, 2017, 139, 4290-4293.	6.6	553
106	Pd Nanoparticles Coupled to WO _{2.72} Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Letters, 2017, 17, 2727-2731.	4.5	136
107	A new layered titanate Na ₂ Li ₂ Ti ₅ O ₁₂ as a high-performance intercalation anode for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 22208-22215.	5.2	18
108	Stabilizing CuPd Nanoparticles via CuPd Coupling to WO _{2.72} Nanorods in Electrochemical Oxidation of Formic Acid. Journal of the American Chemical Society, 2017, 139, 15191-15196.	6.6	106

#	Article	IF	CITATIONS
109	Study on the corrosion resistance and anti-infection of modified magnesium alloy. Bio-Medical Materials and Engineering, 2017, 28, 339-345.	0.4	4
110	A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously. Bioresource Technology, 2017, 245, 649-655.	4.8	57
111	Fabrication of multifunctional CaP-TC composite coatings and the corrosion protection they provide for magnesium alloys. Biomedizinische Technik, 2017, 62, 375-381.	0.9	6
112	Fabrication of robust 3D superhydrophobic material by a simple and low-cost method for oil-water separation and oil absorption. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 117-124.	1.7	17
113	Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 25378-25384.	5.2	100
114	Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 25317-25322.	4.0	75
115	Preparation of a stable superhydrophobic boat for efficient separation and removal of oil from water. RSC Advances, 2016, 6, 53813-53820.	1.7	14
116	One-Step Electrodeposition of Co/CoP Film on Ni Foam for Efficient Hydrogen Evolution in Alkaline Solution. ACS Applied Materials & Interfaces, 2016, 8, 29400-29407.	4.0	144
117	Bi-directional controlled release of ibuprofen and Mg2+ from magnesium alloys coated by multifunctional composite. Materials Science and Engineering C, 2016, 68, 512-518.	3.8	15
118	One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 209, 1-9.	1.7	31
119	A versatile approach for preparing self-recovering superhydrophobic coatings. Chemical Engineering Journal, 2016, 293, 75-81.	6.6	68
120	High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li ⁺ Diffusion Pathway. ACS Applied Materials & Interfaces, 2016, 8, 582-587.	4.0	108
121	Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance. Applied Surface Science, 2015, 351, 410-415.	3.1	15
122	Fabrication of superhydrophobic surface with controlled adhesion by designing heterogeneous chemical composition. Applied Surface Science, 2015, 349, 516-523.	3.1	21
123	Fabrication of superhydrophobic wood surface with enhanced environmental adaptability through a solution-immersion process. Surface and Coatings Technology, 2015, 277, 262-269.	2.2	31
124	A novel functional HPPS/PCL/ZnO composite layer on AZ91 for anticorrosion. Materials Letters, 2015, 148, 134-137.	1.3	7
125	A novel multilayer model with controllable mechanical properties for magnesium-based bone plates. Journal of Materials Science: Materials in Medicine, 2015, 26, 164.	1.7	2
126	A solving-reprecipitation theory for self-healing functionality of stannate coating with a high environmental stability. Electrochimica Acta, 2015, 174, 1192-1201.	2.6	29

#	Article	IF	CITATIONS
127	Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect. Materials Characterization, 2015, 99, 200-209.	1.9	94
128	Highly anticorrosion, self-cleaning superhydrophobic Ni–Co surface fabricated on AZ91D magnesium alloy. Surface and Coatings Technology, 2014, 251, 7-14.	2.2	103
129	Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments. Journal of Materials Engineering and Performance, 2014, 23, 181-186.	1.2	13
130	Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chemical Engineering Journal, 2013, 228, 415-424.	6.6	238
131	Effect of the physiological stabilization process on the corrosion behaviour and surface biocompatibility of AZ91D magnesium alloy. Journal of Materials Chemistry B, 2013, 1, 6213.	2.9	22
132	Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy. Journal of Materials Chemistry, 2012, 22, 4097.	6.7	152
133	Novel Method for Controllable Fabrication of a Superhydrophobic CuO Surface on AZ91D Magnesium Alloy. ACS Applied Materials & Interfaces, 2012, 4, 4348-4356.	4.0	152
134	Electrochemical corrosion behaviors and corrosion protection properties of Ni–Co alloy coating prepared on sintered NdFeB permanent magnet. Journal of Solid State Electrochemistry, 2010, 14, 1601-1608.	1.2	60
135	The electrochemical corrosion behavior of sealed Ni–TiO2 composite coating for sintered NdFeB magnet. Journal of Applied Electrochemistry, 2010, 40, 39-47.	1.5	35
136	Morphology Control and Structural Characterization of Au Crystals: From Twinned Tabular Crystals and Single-Crystalline Nanoplates to Multitwinned Decahedra. Crystal Growth and Design, 2009, 9, 3211-3217.	1.4	28