Qing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7279775/publications.pdf

Version: 2024-02-01

29994 49773 8,478 136 54 87 h-index citations g-index papers 141 141 141 10203 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning Sn-Catalysis for Electrochemical Reduction of CO ₂ to CO via the Core/Shell Cu/SnO ₂ Structure. Journal of the American Chemical Society, 2017, 139, 4290-4293.	6.6	553
2	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	6.6	312
3	Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chemical Engineering Journal, 2013, 228, 415-424.	6.6	238
4	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
5	Atomically Dispersed Feâ€N <i></i> C Electrocatalyst Boosts Oxygen Catalysis via a New Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.	10.2	216
6	Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2018 , 5 , $11-28$.	3.0	169
7	One-step controllable synthesis of amorphous (Ni-Fe)S /NiFe(OH) hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Applied Catalysis B: Environmental, 2019, 246, 337-348.	10.8	169
8	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	10.2	162
9	Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy. Journal of Materials Chemistry, 2012, 22, 4097.	6.7	152
10	Novel Method for Controllable Fabrication of a Superhydrophobic CuO Surface on AZ91D Magnesium Alloy. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4348-4356.	4.0	152
11	Tungstenâ€Doped L1 ₀ â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.	7.2	150
12	One-Step Electrodeposition of Co/CoP Film on Ni Foam for Efficient Hydrogen Evolution in Alkaline Solution. ACS Applied Materials & Solution.	4.0	144
13	Recent Progress in Some Amorphous Materials for Supercapacitors. Small, 2018, 14, e1800426.	5.2	140
14	Pd Nanoparticles Coupled to WO _{2.72} Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Letters, 2017, 17, 2727-2731.	4.5	136
15	Subâ€6 nm Fully Ordered <i>L</i> 1 ₀ â€Ptâ€"Niâ€"Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy Materials, 2019, 9, 1803771.	10.2	127
16	Visible-Light-Responsive Anthraquinone Functionalized Covalent Organic Frameworks for Metal-Free Selective Oxidation of Sulfides: Effects of Morphology and Structure. ACS Catalysis, 2020, 10, 6664-6675.	5.5	120
17	Smart Yolk/Shell ZIF-67@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5027-5033.	3.2	119
18	Use of Ce to Reinforce the Interface of Niâ€Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Lithiumâ€Ion Batteries under High Operating Voltage. ChemSusChem, 2019, 12, 935-943.	3.6	113

#	Article	IF	Citations
19	A novel strategy for the synthesis of highly stable ternary SiO _x composites for Li-ion-battery anodes. Journal of Materials Chemistry A, 2019, 7, 15969-15974.	5.2	112
20	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.	10.2	112
21	One-Step Synthesis of Cationic Hydrogel for Efficient Dye Adsorption and Its Second Use for Emulsified Oil Separation. ACS Sustainable Chemistry and Engineering, 2017, 5, 5598-5607.	3.2	109
22	High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li ⁺ Diffusion Pathway. ACS Applied Materials & Samp; Interfaces, 2016, 8, 582-587.	4.0	108
23	Stabilizing CuPd Nanoparticles via CuPd Coupling to WO _{2.72} Nanorods in Electrochemical Oxidation of Formic Acid. Journal of the American Chemical Society, 2017, 139, 15191-15196.	6.6	106
24	Boosting Tunable Syngas Formation via Electrochemical CO ₂ Reduction on Cu/In ₂ O ₃ Core/Shell Nanoparticles. ACS Applied Materials & Diterfaces, 2018, 10, 36996-37004.	4.0	106
25	Bifunctional Atomically Dispersed Mo–N ₂ /C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 10115-10126.	7.3	106
26	Highly anticorrosion, self-cleaning superhydrophobic Ni–Co surface fabricated on AZ91D magnesium alloy. Surface and Coatings Technology, 2014, 251, 7-14.	2.2	103
27	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	102
28	Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydrate Polymers, 2018, 180, 104-111.	5.1	101
29	Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 25378-25384.	5.2	100
30	Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect. Materials Characterization, 2015, 99, 200-209.	1.9	94
31	Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cel through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.	lls 11.1	94
32	Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as Highâ€Performance Cathode for Naâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803158.	10.2	93
33	Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2018, 11, 2467-2475.	15.6	91
34	Atomicâ€Level Feâ€Nâ€C Coupled with Fe ₃ Câ€Fe Nanocomposites in Carbon Matrixes as Highâ€Efficiency Bifunctional Oxygen Catalysts. Small, 2020, 16, e1906057.	5.2	90
35	Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning. Nanomaterials, 2019, 9, 127.	1.9	82
36	Pristine Transitionâ€Metalâ€Based Metalâ€Organic Frameworks for Electrocatalysis. ChemElectroChem, 2019, 6, 1273-1299.	1.7	78

#	Article	IF	CITATIONS
37	Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31503-31513.	4.0	78
38	Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (II). International Journal of Biological Macromolecules, 2019, 126, 107-117.	3.6	77
39	Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. ACS Applied Materials & Sodium-Ion Batteries. ACS Applied Materials & Sodium-Ion Batteries.	4.0	7 5
40	Unveiling Charge Dynamics in Acetylene-Bridged Donorâ~π–Acceptor Covalent Triazine Framework for Enhanced Photoredox Catalysis. ACS Catalysis, 2021, 11, 7429-7441.	5.5	75
41	Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium–sulfur battery cathodes. Nanoscale, 2018, 10, 5634-5641.	2.8	74
42	Fabrication of 3D porous poly(lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Materials and Design, 2018, 142, 1-10.	3.3	73
43	Ultrathin Nanobelts as an Excellent Bifunctional Oxygen Catalyst: Insight into the Subtle Changes in Structure and Synergistic Effects of Bimetallic Metal–Organic Framework. Small Methods, 2018, 2, 1800240.	4.6	73
44	Assembling amorphous (Fe-Ni)Co -OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Applied Catalysis B: Environmental, 2020, 263, 118338.	10.8	73
45	A versatile approach for preparing self-recovering superhydrophobic coatings. Chemical Engineering Journal, 2016, 293, 75-81.	6.6	68
46	Weakening Intermediate Bindings on CuPd/Pd Core/shell Nanoparticles to Achieve Ptâ€Like Bifunctional Activity for Hydrogen Evolution and Oxygen Reduction Reactions. Advanced Functional Materials, 2021, 31, 2100883.	7.8	68
47	Intelligent self-healing superhydrophobic modification of cotton fabrics via surface-initiated ARGET ATRP of styrene. Chemical Engineering Journal, 2017, 323, 134-142.	6.6	67
48	Synthesis and Progress of New Oxygenâ€Vacant Electrode Materials for Highâ€Energy Rechargeable Battery Applications. Small, 2018, 14, e1802193.	5.2	66
49	Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Research, 2021, 14, 1405-1412.	5.8	65
50	Self-Optimized Ligand Effect in L1 ₂ -PtPdFe Intermetallic for Efficient and Stable Alkaline Hydrogen Oxidation Reaction. ACS Catalysis, 2020, 10, 15207-15216.	5.5	64
51	Realization of a High-Voltage and High-Rate Nickel-Rich NCM Cathode Material for LIBs by Co and Ti Dual Modification. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17707-17716.	4.0	64
52	Defect-free-induced Na ⁺ disordering in electrode materials. Energy and Environmental Science, 2021, 14, 3130-3140.	15.6	62
53	Electrochemical corrosion behaviors and corrosion protection properties of Ni–Co alloy coating prepared on sintered NdFeB permanent magnet. Journal of Solid State Electrochemistry, 2010, 14, 1601-1608.	1.2	60
54	Improving the Structure Stability of LiNi _{0.1} O ₂ by Surface Perovskite-like La ₂ Ni _{Ni_{0.5}Li_{O₄ Self-Assembling and Subsurface La³⁺ Doping. ACS Applied Materials & https://www.acsub/a}}	4.0	59

#	Article	IF	Citations
55	A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously. Bioresource Technology, 2017, 245, 649-655.	4.8	57
56	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Science China Materials, 2021, 64, 137-148.	3.5	55
57	Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39291-39303.	4.0	55
58	Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorganic Chemistry Frontiers, 2020, 7, 2089-2096.	3.0	54
59	Ultrathin and defect-rich intermetallic Pd ₂ Sn nanosheets for efficient oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15665-15669.	5.2	54
60	One-step electrodeposition of a hierarchically structured S-doped NiCo film as a highly-efficient electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 15238-15248.	2.8	52
61	F-Doped NaTi ₂ (PO ₄) ₃ /C Nanocomposite as a High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3116-3124.	4.0	52
62	Interface Engineering of Crystalline/Amorphous Co ₂ P/CoMoP _{<i>x</i>} Nanostructure as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2437-2445.	3.2	51
63	Promoting C ₂₊ Production from Electrochemical CO ₂ Reduction on Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. ACS Sustainable Chemistry and Engineering, 2020, 8, 15223-15229.	3.2	51
64	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. ACS Sustainable Chemistry and Engineering, 2019, 7, 8986-8992.	3.2	48
65	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie - International Edition, 2018, 57, 451-455.	7.2	47
66	3D porous poly(ε-caprolactone)/58S bioactive glass–sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering. Materials and Design, 2018, 160, 1-8.	3.3	46
67	Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Nanoscale, 2019, 11, 17376-17383.	2.8	46
68	New P2-Type Honeycomb-Layered Sodium-Ion Conductor: Na ₂ Mg ₂ TeO ₆ . ACS Applied Materials & Teo=1.0, 10, 15760-15766.	4.0	44
69	Nickel Oxide/Graphene Composites: Synthesis and Applications. Chemistry - A European Journal, 2019, 25, 2141-2160.	1.7	44
70	NiO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage. Journal of Colloid and Interface Science, 2021, 581, 709-718.	5.0	44
71	A P2â€Type Layered Superionic Conductor Gaâ€Doped Na ₂ Zn ₂ TeO ₆ for Allâ€Solidâ€State Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1057-1061.	1.7	42
72	Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment. Journal of Cleaner Production, 2019, 211, 1463-1470.	4.6	41

#	Article	IF	CITATIONS
73	In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29985-29992.	4.0	39
74	Effective Approaches for Designing Stable M–N <i>_x</i> /I>/C Oxygenâ€Reduction Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells. Advanced Materials, 2022, 34, e2200595.	11.1	38
75	Ultrathin Nanosheet Niâ€Metal Organic Framework Assemblies for Highâ€Efficiency Ascorbic Acid Electrocatalysis. ChemElectroChem, 2018, 5, 3859-3865.	1.7	37
76	The electrochemical corrosion behavior of sealed Ni–TiO2 composite coating for sintered NdFeB magnet. Journal of Applied Electrochemistry, 2010, 40, 39-47.	1.5	35
77	3D hierarchical porous Co _{1â^'x} S@C derived from a ZIF-67 single crystals self-assembling superstructure with superior pseudocapacitance. Journal of Materials Chemistry A, 2019, 7, 17248-17253.	5.2	34
78	Fabrication of superhydrophobic wood surface with enhanced environmental adaptability through a solution-immersion process. Surface and Coatings Technology, 2015, 277, 262-269.	2.2	31
79	One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 209, 1-9.	1.7	31
80	Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. RSC Advances, 2020, 10, 27033-27041.	1.7	31
81	Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie, 2019, 131, 15617-15623.	1.6	30
82	A solving-reprecipitation theory for self-healing functionality of stannate coating with a high environmental stability. Electrochimica Acta, 2015, 174, 1192-1201.	2.6	29
83	One-pot formic acid dehydrogenation and synthesis of benzene-fused heterocycles over reusable AgPd/WO _{2.72} nanocatalyst. Journal of Materials Chemistry A, 2018, 6, 23766-23772.	5.2	29
84	Constructing Co–N–C Catalyst via a Double Crosslinking Hydrogel Strategy for Enhanced Oxygen Reduction Catalysis in Fuel Cells. Small, 2021, 17, e2100735.	5.2	29
85	Morphology Control and Structural Characterization of Au Crystals: From Twinned Tabular Crystals and Single-Crystalline Nanoplates to Multitwinned Decahedra. Crystal Growth and Design, 2009, 9, 3211-3217.	1.4	28
86	Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 495-502.	2.5	28
87	Constructing ultrathin FeS/FeO H@Fe nano-sheets for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 594, 575-583.	5.0	27
88	Novel Cerium Hexacyanoferrate(II) as Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 187-191.	2.5	26
89	Accelerated polysulfide conversion on hierarchical porous vanadium–nitrogen–carbon for advanced lithium–sulfur batteries. Nanoscale, 2020, 12, 584-590.	2.8	26
90	Bimetallic Co/Mo ₂ C Nanoparticles Embedded in 3D Hierarchical Nâ€doped Carbon Heterostructures as Highly Efficient Electrocatalysts for Water Splitting. ChemCatChem, 2020, 12, 3737-3745.	1.8	26

#	Article	IF	CITATIONS
91	Metal–Organic Frameworkâ€Based Sulfurâ€Loaded Materials. Energy and Environmental Materials, 2022, 5, 215-230.	7.3	24
92	Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO ₂ reduction. Chemical Communications, 2021, 57, 1839-1854.	2.2	23
93	Effect of the physiological stabilization process on the corrosion behaviour and surface biocompatibility of AZ91D magnesium alloy. Journal of Materials Chemistry B, 2013, 1, 6213.	2.9	22
94	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie, 2022, 134, .	1.6	22
95	Fabrication of superhydrophobic surface with controlled adhesion by designing heterogeneous chemical composition. Applied Surface Science, 2015, 349, 516-523.	3.1	21
96	Construction of an N-Decorated Carbon-Encapsulated W ₂ C/WP Heterostructure as an Efficient Electrocatalyst for Hydrogen Evolution in Both Alkaline and Acidic Media. ACS Applied Materials & Decorate Supplied Supplied Materials & Decorate Supplied Suppl	4.0	20
97	Local Structural Changes and Inductive Effects on Ion Conduction in Antiperovskite Solid Electrolytes. Chemistry of Materials, 2020, 32, 8827-8835.	3.2	19
98	Correlation between Potassium-Ion Storage Mechanism and Local Structural Evolution in Hard Carbon Materials. Chemistry of Materials, 2022, 34, 4202-4211.	3 . 2	19
99	A new layered titanate Na ₂ Li ₂ Ti ₅ O ₁₂ as a high-performance intercalation anode for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 22208-22215.	5.2	18
100	Self-Supported Ni/NiSP _{<i>x</i>} Microdendrite Structure for Highly Efficient and Stable Overall Water Splitting in Simulated Industrial Environment. ACS Sustainable Chemistry and Engineering, 2019, 7, 11778-11786.	3.2	18
101	Fabrication of robust 3D superhydrophobic material by a simple and low-cost method for oil-water separation and oil absorption. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 117-124.	1.7	17
102	Improving activity of Ni3P/Mn hybrid film via electrochemical tuning for water splitting under simulated industrial environment. Electrochimica Acta, 2019, 324, 134897.	2.6	17
103	An effective dual-modification strategy to enhance the performance of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ cathode for Li-ion batteries. Nanoscale, 2021, 13, 4670-4677.	2.8	17
104	Synthesis of an <i>in situ</i> core–shell interlink ultrathin-nanosheet Fe@Fe _x NiO/Ni@Ni _y CoP nanohybrid by scalable layer-to-layer assembly strategy as an ultra-highly efficient bifunctional electrocatalyst for alkaline/neutral water reduction/oxidation. Journal of Materials Chemistry A, 2021, 9, 5833-5847.	5.2	17
105	Local Structures of Soft Carbon and Electrochemical Performance of Potassium-Ion Batteries. ACS Applied Materials & Early: Interfaces, 2021, 13, 28261-28269.	4.0	17
106	Interstitial B-Doping in Pt Lattice to Upgrade Oxygen Electroreduction Performance. ACS Catalysis, 2022, 12, 8848-8856.	5 . 5	17
107	A versatile porous 3D polyurethane/polyacrylic acid (PU-PAA) membrane for one-step multiple contaminants water purification. Journal of Membrane Science, 2018, 563, 191-198.	4.1	16
108	Yolk@Shell Structured MnS@Nitrogen-Doped Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3487-3494.	2.5	16

#	Article	IF	Citations
109	Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance. Applied Surface Science, 2015, 351, 410-415.	3.1	15
110	Bi-directional controlled release of ibuprofen and Mg2+ from magnesium alloys coated by multifunctional composite. Materials Science and Engineering C, 2016, 68, 512-518.	3.8	15
111	Preparation of a stable superhydrophobic boat for efficient separation and removal of oil from water. RSC Advances, 2016, 6, 53813-53820.	1.7	14
112	Synthesis of Co _{0.5} Mn _{0.1} Ni _{0.4} C ₂ O ₄ 4â< <i>n</i> i> H <sul -="" 14,="" 2019,="" 2259-2265.<="" an="" asian="" catalysis.="" chemistry="" for="" glucose="" highâ€performance="" journal,="" micropolyhedrons:="" multimetal="" oxidation="" synergy="" th=""><th>>2</th><th>014</th></sul>	>2	014
113	Generating highly active Ni11(HPO3)8(OH)6/Mn3O4 catalyst for electrocatalytic hydrogen evolution reaction by electrochemical activation. Journal of Colloid and Interface Science, 2020, 560, 714-721.	5.0	14
114	Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments. Journal of Materials Engineering and Performance, 2014, 23, 181-186.	1.2	13
115	Functionalization of biodegradable PLA nonwoven fabrics as super-wetting membranes for simultaneous efficient dye and oil/water separation. New Journal of Chemistry, 2019, 43, 9696-9705.	1.4	13
116	Constructing Double-Layer CoP/CeO ₂ â€"FeO _{<i>x</i>} H Hybrid Catalysts for Alkaline and Neutral Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 11981-11990.	3.2	13
117	Molybdenumâ€doped ordered L1 ₀ â€PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat, 2022, 2, 347-356.	7.8	13
118	A High Rate and Stable Hybrid Li/Naâ€ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte. Small, 2021, 17, e2101650.	5.2	12
119	Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries: Na _{1.5} Ti _{1.5} Fe _{0.5} (PO ₄) ₃ . Journal of Materials Chemistry A, 2019, 7, 24953-24963.	5.2	10
120	Core@shell Sb@Sb ₂ O ₃ nanoparticles anchored on 3D nitrogen-doped carbon nanosheets as advanced anode materials for Li-ion batteries. Nanoscale Advances, 2020, 2, 5578-5583.	2.2	9
121	Acetylene/Vinyleneâ€Bridged Ï€â€Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. ChemSusChem, 2022, 15, .	3.6	9
122	A novel functional HPPS/PCL/ZnO composite layer on AZ91 for anticorrosion. Materials Letters, 2015, 148, 134-137.	1.3	7
123	Sublimated Seâ€Induced Formation of Dualâ€Conductive Surface Layers for Highâ€Performance Niâ€Rich Layered Cathodes. ChemElectroChem, 2021, 8, 4207-4217.	1.7	7
124	Fabrication of multifunctional CaP-TC composite coatings and the corrosion protection they provide for magnesium alloys. Biomedizinische Technik, 2017, 62, 375-381.	0.9	6
125	Defectâ€Rich Copperâ€doped Ruthenium Hollow Nanoparticles for Efficient Hydrogen Evolution Electrocatalysis in Alkaline Electrolyte. Chemistry - an Asian Journal, 2020, 15, 2868-2872.	1.7	6
126	Hard carbon spheres prepared by a modified Stöber method as anode material for high-performance potassium-ion batteries. RSC Advances, 2021, 11, 14883-14890.	1.7	6

#	Article	IF	Citations
127	Aqueous Phase Approach to Au-Modified Pt–Co/C toward Efficient and Durable Cathode Catalyst of PEMFCs. Journal of Physical Chemistry C, 2021, 125, 23821-23829.	1.5	6
128	Oxygen Reduction: Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode (Adv. Energy Mater. 29/2020). Advanced Energy Materials, 2020, 10, 2070124.	10.2	5
129	Study on the corrosion resistance and anti-infection of modified magnesium alloy. Bio-Medical Materials and Engineering, 2017, 28, 339-345.	0.4	4
130	Boosting Li/Na storage performance of graphite by defect engineering. RSC Advances, 2021, 11, 22297-22304.	1.7	3
131	A novel multilayer model with controllable mechanical properties for magnesium-based bone plates. Journal of Materials Science: Materials in Medicine, 2015, 26, 164.	1.7	2
132	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie, 2018, 130, 460-464.	1.6	2
133	Facile Synthesis of Zn/Nâ€doped CuO and Their Application in Oxygen Evolution Reaction. ChemistrySelect, 2018, 3, 12205-12209.	0.7	2
134	Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution. Processes, 2021, 9, 1622.	1.3	1
135	A novel fixing method for Mg-based specimens used in the in-vitro immersion test. Anti-Corrosion Methods and Materials, 2017, 64, 405-408.	0.6	0
136	Some MoS ₂ -Based Materials for Sodium-Ion Battery., 2021, , 111-126.		0