Masayoshi Tomizuka

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7279516/masayoshi-tomizuka-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

308 6,842 40 72 g-index

358 8,742 3 6.45 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
308	Guest Editorial Introduction to the Focused Section on Adaptive Learning and Control for Advanced Mechatronics Systems. <i>IEEE/ASME Transactions on Mechatronics</i> , 2022 , 1-4	5.5	1
307	Offline-Online Learning of Deformation Model for Cable Manipulation With Graph Neural Networks. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 5544-5551	4.2	2
306	Robotic Cable Routing with Spatial Representation. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 5687	-54694	2
305	SceGene: Bio-Inspired Traffic Scenario Generation for Autonomous Driving Testing. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-16	6.1	О
304	Trajectory Splitting: A Distributed Formulation for Collision Avoiding Trajectory Optimization 2021,		2
303	Trajectory Optimization for Manipulation of Deformable Objects: Assembly of Belt Drive Units 2021 ,		2
302	. IEEE Transactions on Automatic Control, 2021 , 66, 5554-5560	5.9	13
301	Long-Term Trajectory Prediction of the Human Hand and Duration Estimation of the Human Action. <i>IEEE Robotics and Automation Letters</i> , 2021 , 1-1	4.2	1
300	Neural-Network-Based Iterative Learning Control for Multiple Tasks. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 4178-4190	10.3	10
299	IDE-Net: Interactive Driving Event and Pattern Extraction From Human Data. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 3065-3072	4.2	2
298	Human-Aware Robot Task Planning Based on a Hierarchical Task Model. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 1136-1143	4.2	2
297	Socially-Compatible Behavior Design of Autonomous Vehicles With Verification on Real Human Data. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 3421-3428	4.2	2
296	Learning Variable Impedance Control via Inverse Reinforcement Learning for Force-Related Tasks. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 2225-2232	4.2	12
295	Feedback-based Digital Higher-order Terminal Sliding Mode for 6-DOF Industrial Manipulators 2021		2
294	Enable faster and smoother spatio-temporal trajectory planning for autonomous vehicles in constrained dynamic environment. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</i> , 2021 , 235, 1101-1112	1.4	5
293	On Robust Stability and Performance With a Fixed-Order Controller Design for Uncertain Systems. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-13	7.3	5
292	Practical Fractional-Order Variable-Gain Super-Twisting Control with Application to Wafer Stages of Photolithography Systems. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 1-1	5.5	3

(2020-2021)

291	Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction and Tracking. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-14	6.1	3
290	Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2021, 1-11	6.1	16
289	. IEEE Transactions on Industrial Electronics, 2021 , 1-1	8.9	2
288	Simplified Realization of Zero Phase Error Tracking. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2021 , 143,	1.6	3
287	Autonomous Ground Vehicle Lane-Keeping LPV Model-Based Control: Dual-Rate State Estimation and Comparison of Different Real-Time Control Strategies. <i>Sensors</i> , 2021 , 21,	3.8	10
286	Online Learning of Unknown Dynamics for Model-Based Controllers in Legged Locomotion. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 8442-8449	4.2	5
285	Continual Multi-Agent Interaction Behavior Prediction With Conditional Generative Memory. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 8410-8417	4.2	3
284	Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-14	6.1	3
283	. IEEE Transactions on Intelligent Transportation Systems, 2021 , 1-17	6.1	3
282	RAIN: Reinforced Hybrid Attention Inference Network for Motion Forecasting 2021,		2
282	RAIN: Reinforced Hybrid Attention Inference Network for Motion Forecasting 2021 , . IEEE/ASME Transactions on Mechatronics, 2020 , 25, 1961-1970	5.5	15
		5.5	
281	. <i>IEEE/ASME Transactions on Mechatronics</i> , 2020 , 25, 1961-1970 Towards Efficient Human-Robot Collaboration With Robust Plan Recognition and Trajectory		15
281 280	. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1961-1970 Towards Efficient Human-Robot Collaboration With Robust Plan Recognition and Trajectory Prediction. IEEE Robotics and Automation Letters, 2020, 5, 2602-2609 Nonlinear Control With High-Gain Extended State Observer for Position Tracking of	4.2	15 17
281 280 279	. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1961-1970 Towards Efficient Human-Robot Collaboration With Robust Plan Recognition and Trajectory Prediction. IEEE Robotics and Automation Letters, 2020, 5, 2602-2609 Nonlinear Control With High-Gain Extended State Observer for Position Tracking of Electro-Hydraulic Systems. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2610-2621 A Review of Manufacturing Process Control. Journal of Manufacturing Science and Engineering,	4.2 5.5	15 17 18
281 280 279 278	. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1961-1970 Towards Efficient Human-Robot Collaboration With Robust Plan Recognition and Trajectory Prediction. IEEE Robotics and Automation Letters, 2020, 5, 2602-2609 Nonlinear Control With High-Gain Extended State Observer for Position Tracking of Electro-Hydraulic Systems. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2610-2621 A Review of Manufacturing Process Control. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, Development of a new compact and light velocity-based mechanical safety device for a rehabilitation assist suit. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2020,	4.2 5.5 3.3	15 17 18
281 280 279 278	. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1961-1970 Towards Efficient Human-Robot Collaboration With Robust Plan Recognition and Trajectory Prediction. IEEE Robotics and Automation Letters, 2020, 5, 2602-2609 Nonlinear Control With High-Gain Extended State Observer for Position Tracking of Electro-Hydraulic Systems. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2610-2621 A Review of Manufacturing Process Control. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, Development of a new compact and light velocity-based mechanical safety device for a rehabilitation assist suit. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2020, 14, JAMDSM0101-JAMDSM0101 Fractional-Order Variable-Gain Super-Twisting Control With Application to Wafer Stages of	4.2 5.5 3.3	15 17 18 4

273	Precise Linear-Motor Synchronization Control via Cross-Coupled Second-Order Discrete-Time Fractional-Order Sliding Mode. <i>IEEE/ASME Transactions on Mechatronics</i> , 2020 , 1-1	5.5	14
272	Experimental Evaluation of Human Motion Prediction Toward Safe and Efficient Human Robot Collaboration 2020 ,		2
271	HIControl Using Linear Parameter Varying Approach for Motion Control Systems Under Communication Delays: Application to PMSM. <i>Journal of Electrical Engineering and Technology</i> , 2020 , 15, 1797-1809	1.4	О
270	Generic Tracking and Probabilistic Prediction Framework and Its Application in Autonomous Driving. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 3634-3649	6.1	17
269	Interaction-aware Multi-agent Tracking and Probabilistic Behavior Prediction via Adversarial Learning 2019 ,		19
268	Coordination and Trajectory Prediction for Vehicle Interactions via Bayesian Generative Modeling 2019 ,		7
267	Behavior Planning of Autonomous Cars with Social Perception 2019,		11
266	Wasserstein Generative Learning with Kinematic Constraints for Probabilistic Interactive Driving Behavior Prediction 2019 ,		14
265	Multi-modal Probabilistic Prediction of Interactive Behavior via an Interpretable Model 2019,		12
264	Track deformable objects from point clouds with structure preserved registration. <i>International Journal of Robotics Research</i> , 2019 , 027836491984143	5.7	7
263	Adaptive Probabilistic Vehicle Trajectory Prediction Through Physically Feasible Bayesian Recurrent Neural Network 2019 ,		5
262	Efficient Grasp Planning and Execution With Multifingered Hands by Surface Fitting. <i>IEEE Robotics and Automation Letters</i> , 2019 , 4, 3995-4002	4.2	7
261	A Remote Control Strategy for an Autonomous Vehicle with Slow Sensor Using Kalman Filtering and Dual-Rate Control. <i>Sensors</i> , 2019 , 19,	3.8	6
260	. IEEE/ASME Transactions on Mechatronics, 2019 , 24, 2040-2051	5.5	7
259	Development of a knee joint assist suit with a velocity-based mechanical safety device (Transient response analysis of the safety device and experiments). <i>Transactions of the JSME (in Japanese)</i> , 2019 , 85, 19-00146-19-00146	0.2	1
258	Bayesian Persuasive Driving 2019 ,		2
257	Precise Correntropy-based 3D Object Modelling With Geometrical Traffic Prior 2019 ,		1
256	Robust Deformation Model Approximation for Robotic Cable Manipulation 2019,		8

(2018-2019)

255	Deep Imitation Learning for Autonomous Driving in Generic Urban Scenarios with Enhanced Safety 2019 ,		22	
254	Conditional Generative Neural System for Probabilistic Trajectory Prediction 2019,		40	
253	The Experimental Realization of an Artificial Low-Reynolds-Number Swimmer with Three-Dimensional Maneuverability 2019 ,		5	
252	Constructing a Highly Interactive Vehicle Motion Dataset 2019,		9	
251	Human Motion Prediction using Semi-adaptable Neural Networks 2019,		13	
250	Interaction-aware Decision Making with Adaptive Strategies under Merging Scenarios 2019,		16	
249	Prediction of Human Arm Target for Robot Reaching Movements 2019,		6	
248	Model-free Deep Reinforcement Learning for Urban Autonomous Driving 2019 ,		55	
247	Energy-Efficient Control for an Unmanned Ground Vehicle in a Wireless Sensor Network. <i>Journal of Sensors</i> , 2019 , 2019, 1-16	2	6	
246	Interpretable Modelling of Driving Behaviors in Interactive Driving Scenarios based on Cumulative Prospect Theory 2019 ,		12	
245	Interactive Prediction for Multiple, Heterogeneous Traffic Participants with Multi-Agent Hybrid Dynamic Bayesian Network 2019 ,		5	
244	Generic Prediction Architecture Considering both Rational and Irrational Driving Behaviors 2019,		6	
243	A Position-Based Friction Error Model and Its Application to Parameter Identification. <i>IEEE Access</i> , 2019 , 7, 7759-7767	3.5	2	
242	A frequency-shaping methodology for discrete-time sliding mode control. <i>International Journal of Control</i> , 2019 , 92, 1662-1671	1.5	3	
241	Distributed Conflict Resolution for Connected Autonomous Vehicles. <i>IEEE Transactions on Intelligent Vehicles</i> , 2018 , 3, 18-29	5	45	
240	A Double Disturbance Observer Design for Compensation of Unknown Time Delay in a Wireless Motion Control System. <i>IEEE Transactions on Control Systems Technology</i> , 2018 , 26, 675-683	4.8	8	
239	A Framework for Manipulating Deformable Linear Objects by Coherent Point Drift. <i>IEEE Robotics and Automation Letters</i> , 2018 , 3, 3426-3433	4.2	21	
238	Reference Modulation for Performance Enhancement in Motion Control Systems 2018 ,		1	

237	Improving Efficiency of Autonomous Vehicles by V2V Communication 2018,	5
236	Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances. <i>Mechanical Systems and Signal Processing</i> , 2018 , 104, 436-448 7.8	16
235	Efficient Trajectory Optimization for Robot Motion Planning 2018,	2
234	Real-Time Grasp Planning for Multi-Fingered Hands by Finger Splitting 2018,	4
233	Probabilistic Prediction of Interactive Driving Behavior via Hierarchical Inverse Reinforcement Learning 2018 ,	30
232	Generic Probabilistic Interactive Situation Recognition and Prediction: From Virtual to Real 2018,	13
231	Towards a Fatality-Aware Benchmark of Probabilistic Reaction Prediction in Highly Interactive Driving Scenarios 2018 ,	14
230	Courteous Autonomous Cars 2018 ,	22
229	Grasp Planning for Customized Grippers by Iterative Surface Fitting 2018 ,	2
228	Probabilistic Prediction of Vehicle Semantic Intention and Motion 2018,	50
227	Continuous Decision Making for On-road Autonomous Driving under Uncertain and Interactive Environments 2018 ,	13
226	Generic Vehicle Tracking Framework Capable of Handling Occlusions Based on Modified Mixture Particle Filter 2018 ,	17
225	Cooperative Driving Based on Negotiation with Persuasion and Concession 2018,	2
224	Development of a knee joint assist suit with a velocity-based mechanical safety device (Frequency response analysis of the safety device and experiments). <i>Transactions of the JSME (in Japanese)</i> , 0.2 2018 , 84, 18-00314-18-00314	2
223	Characterization of Active/Passive Pneumatic Actuators for Assistive Devices 2018,	2
222	A Framework for Probabilistic Generic Traffic Scene Prediction 2018,	12
221	Zero-shot Deep Reinforcement Learning Driving Policy Transfer for Autonomous Vehicles based on Robust Control 2018 ,	10
220	Deep Hierarchical Reinforcement Learning for Autonomous Driving with Distinct Behaviors 2018,	11

(2017-2018)

219	A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning 2018 ,		18
218	Fusing Bird Eye View LIDAR Point Cloud and Front View Camera Image for 3D Object Detection 2018 ,		9
217	Optimal Control Parameterization for ActivelPassive EXoskeleton with Variable Impedance Actuator 2018 ,		2
216	. IEEE/ASME Transactions on Mechatronics, 2018 , 23, 2671-2680	5.5	15
215	Non-uniform Multi-rate Estimator based Periodic Event-Triggered Control for resource saving. <i>Information Sciences</i> , 2018 , 459, 86-102	7.7	11
214	Optimal preview control for a linear continuous-time stochastic control system in finite-time horizon. <i>International Journal of Systems Science</i> , 2017 , 48, 129-137	2.3	40
213	High-Gain-Observer-Based Integral Sliding Mode Control for Position Tracking of Electrohydraulic Servo Systems. <i>IEEE/ASME Transactions on Mechatronics</i> , 2017 , 22, 2695-2704	5.5	41
212	Real-Time Finger Gaits Planning for Dexterous Manipulation. <i>IFAC-PapersOnLine</i> , 2017 , 50, 12765-1277	20.7	5
211	Design of arbitrary-order robust iterative learning control based on robust control theory. <i>Mechatronics</i> , 2017 , 47, 67-76	3	15
21 0	Spatially-partitioned environmental representation and planning architecture for on-road autonomous driving 2017 ,		40
209	Speed profile planning in dynamic environments via temporal optimization 2017,		16
208	A design methodology for disturbance observer with application to precision motion control: An H-infinity based approach 2017 ,		12
207	Convex feasible set algorithm for constrained trajectory smoothing 2017,		16
206	State estimation for deformable objects by point registration and dynamic simulation 2017,		13
205	Robust dexterous manipulation under object dynamics uncertainties 2017,		4
204	Distributed and cooperative optimization-based iterative learning control for large-scale building temperature regulation 2017 ,		4
203	2017,		20
202	Boundary layer heuristic for search-based nonholonomic path planning in maze-like environments 2017 ,		1

201	Real-time collision avoidance algorithm on industrial manipulators 2017,		7
200	Development of a knee joint assist suit with hardware-based safety devices (Proposal and design of the assist suit). <i>Transactions of the JSME (in Japanese)</i> , 2017 , 83, 17-00279-17-00279	0.2	3
199	Safe and feasible motion generation for autonomous driving via constrained policy net 2017,		6
198	Real-time robust finger gaits planning under object shape and dynamics uncertainties 2017,		4
197	A guided search framework in multiple model control 2017 ,		1
196	Discrete-Time Reduced-Complexity Youla Parameterization for Dual-Input Single-Output Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2016 , 24, 302-309	4.8	7
195	Motion control of series-elastic actuators 2016 ,		2
194	Iterative design of feedback and feedforward controller with input saturation constraint for building temperature control 2016 ,		4
193	Enhanced wide-spectrum vibration suppression based on adaptive loop shaping 2016,		2
192	Enabling safe freeway driving for automated vehicles 2016 ,		21
191	Multirate iterative learning control for enhanced motion performance with application to wafer scanner systems 2016 ,		1
190	Discrete-Time H-Infinity Synthesis of Frequency-Shaped Sliding Mode Control for Suppression of Vibration With Multiple Peak Frequencies 2016 ,		2
189	Human guidance programming on a 6-DoF robot with collision avoidance 2016 ,		6
188	Robotic manipulation of deformable objects by tangent space mapping and non-rigid registration 2016 ,		11
187	Autonomous alignment of peg and hole by force/torque measurement for robotic assembly 2016,		26
186	Robust impedance control with applications to a series-elastic actuated system 2016,		8
185	Multi-rate Observer Based Sliding Mode Control with Frequency Shaping for Vibration Suppression Beyond Nyquist Frequency**This work was sponsored by Western Digital Corporation <i>IFAC-PapersOnLine</i> , 2016 , 49, 13-18	0.7	8
184	Extended state observer with phase compensation to estimate and suppress high-frequency disturbances 2016 ,		7

183	Zero time delay input shaping for smooth settling of industrial robots 2016,		2
182	Design of a Passive Upper Limb Exoskeleton for Macaque Monkeys. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> 2016 , 138,	1.6	3
181	A non-conservatively defensive strategy for urban autonomous driving 2016,		34
180	Control-oriented model of a turbocharged engine airpath with discrete-time considerations 2016 ,		1
179	Teach industrial robots peg-hole-insertion by human demonstration 2016,		28
178	Optimization-based constrained iterative learning control with application to building temperature control systems 2016 ,		5
177	Path-constrained trajectory planning for robot service life optimization 2016,		1
176	Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing. <i>International Journal of Adaptive Control and Signal Processing</i> , 2015 , 29, 1459-1474	2.8	24
175	Clinical impact of gait training enhanced with visual kinematic biofeedback: Patients with Parkinson's disease and patients stable post stroke. <i>Neuropsychologia</i> , 2015 , 79, 332-43	3.2	43
174	Preview control for impulse-free continuous-time descriptor systems. <i>International Journal of Control</i> , 2015 , 88, 1142-1149	1.5	24
173	Design and torque-mode control of a cable-driven rotary series elastic actuator for subject-robot interaction 2015 ,		14
172	Modified Preview Control for a Wireless Tracking Control System With Packet Loss. <i>IEEE/ASME Transactions on Mechatronics</i> , 2015 , 20, 299-307	5.5	33
171	Flatness-Based Nonlinear Control for Position Tracking of Electrohydraulic Systems. <i>IEEE/ASME Transactions on Mechatronics</i> , 2015 , 20, 197-206	5.5	47
170	Probabilistic Approach to Modeling and Parameter Learning of Indirect Drive Robots From Incomplete Data. <i>IEEE/ASME Transactions on Mechatronics</i> , 2015 , 20, 1036-1045	5.5	2
169	Introduction and initial exploration of an Active/Passive Exoskeleton framework for portable assistance 2015 ,		8
168	Robust principal component analysis for iterative learning control of precision motion systems with non-repetitive disturbances 2015 ,		6
167	Robust time delay compensation in a wireless motion control system with double disturbance observers 2015 ,		5
166	Statistical Learning Algorithms to Compensate Slow Visual Feedback for Industrial Robots. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2015 , 137,	1.6	14

165	Dual-Stage Adaptive Friction Compensation for Precise Load Side Position Tracking of Indirect Drive Mechanisms. <i>IEEE Transactions on Control Systems Technology</i> , 2015 , 23, 164-175	4.8	20
164	A novel integrated chassis controller for full drive-by-wire vehicles. <i>Vehicle System Dynamics</i> , 2015 , 53, 215-236	2.8	59
163	Optimal Decoupled Disturbance Observers for Dual-Input Single-Output Systems. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2014 , 136,	1.6	11
162	Dual-Stage Iterative Learning Control for MIMO Mismatched System With Application to Robots With Joint Elasticity. <i>IEEE Transactions on Control Systems Technology</i> , 2014 , 22, 1350-1361	4.8	40
161	Nonlinear Controller With the Dead-Zone and Saturation for Optical Disk Drive Systems in the Presence of External Shocks. <i>IEEE/ASME Transactions on Mechatronics</i> , 2014 , 19, 1458-1463	5.5	5
160	New Repetitive Control With Improved Steady-State Performance and Accelerated Transient. <i>IEEE Transactions on Control Systems Technology</i> , 2014 , 22, 664-675	4.8	77
159	A terminal sliding mode based torque distribution control for an individual-wheel-drive vehicle. <i>Journal of Zhejiang University: Science A</i> , 2014 , 15, 681-693	2.1	16
158	Discrete-time Frequency-shaped Sliding Mode Control for Audio-vibration Rejection in Hard Disk Drives. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 6843-6848	3	3
157	Fusion of Computer, Communication, and Control Technologies: Needs and Strategies 2014 , 147-157		
156	A guidance robot for the visually impaired: System description and velocity reference generation 2014 ,		1
155	An Overview on Study of Identification of Driver Behavior Characteristics for Automotive Control. <i>Mathematical Problems in Engineering</i> , 2014 , 2014, 1-15	1.1	40
154	Feedforward Input Generation Based on Neural Network Prediction in Multi-Joint Robots1. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> 2014 , 136,	1.6	2
153	Ensuring safety in human-robot coexistence environment 2014 ,		19
152	Kinematic design and analysis for a macaque upper-limb exoskeleton with shoulder joint alignment 2014 ,		1
151	An improved delay-dependent stability criterion for linear uncertain systems with multiple time-varying delays. <i>International Journal of Control</i> , 2014 , 87, 861-873	1.5	14
150	Design of kinematic controller for real-time vision guided robot manipulators 2014,		3
149	Improving Control Performance by Minimizing Jitter in RT-WiFi Networks 2014,		14
148	Fast planning of well conditioned trajectories for model learning 2014,		10

147	Direct Joint Space State Estimation in Robots With Multiple Elastic Joints. <i>IEEE/ASME Transactions on Mechatronics</i> , 2014 , 19, 697-706	5.5	12
146	Real-time nonlinear programming by amplitude modulation. <i>International Journal of Control, Automation and Systems</i> , 2013 , 11, 742-751	2.9	1
145	Robust Performance Enhancement Using Disturbance Observers for Hysteresis Compensation Based on Generalized PrandtlBhlinskii Model. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2013 , 135,	1.6	17
144	Optimal preview control for discrete-time descriptor causal systems in a multirate setting. <i>International Journal of Control</i> , 2013 , 86, 844-854	1.5	17
143	Corrections to "A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives" [Mar 12 408-415]. <i>IEEE Transactions on Control Systems Technology</i> , 2013 , 21, 1996-1996	4.8	
142	On the time-optimal trajectory planning and control of robotic manipulators along predefined paths 2013 ,		8
141	Robust tracking performance and disturbance rejection for a class of nonlinear systems using disturbance observers 2013 ,		3
140	Network-Based Rehabilitation System for Improved Mobility and Tele-Rehabilitation. <i>IEEE Transactions on Control Systems Technology</i> , 2013 , 21, 1980-1987	4.8	26
139	Torque Mode Control of a Cable-Driven Actuating System by Sensor Fusion. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2013 , 135,	1.6	21
138	A nonlinear feedback controller for aerial self-righting by a tailed robot 2013 ,		28
137	Design of force compensator with variable gain for bilateral control system under time delay 2013 ,		3
137 136	Design of force compensator with variable gain for bilateral control system under time delay 2013 , Control methodologies for precision positioning systems 2013 ,		6
136	Control methodologies for precision positioning systems 2013,		6
136 135	Control methodologies for precision positioning systems 2013, Fall-prediction algorithm using a neural network for safety enhancement of elderly 2013, Selective model inversion and adaptive disturbance observer for rejection of time-varying	5.5	5
136 135 134	Control methodologies for precision positioning systems 2013, Fall-prediction algorithm using a neural network for safety enhancement of elderly 2013, Selective model inversion and adaptive disturbance observer for rejection of time-varying vibrations on an active suspension 2013, A Compact Rotary Series Elastic Actuator for Human Assistive Systems. IEEE/ASME Transactions on	5·5 4.8	5
136 135 134	Control methodologies for precision positioning systems 2013, Fall-prediction algorithm using a neural network for safety enhancement of elderly 2013, Selective model inversion and adaptive disturbance observer for rejection of time-varying vibrations on an active suspension 2013, A Compact Rotary Series Elastic Actuator for Human Assistive Systems. IEEE/ASME Transactions on Mechatronics, 2012, 17, 288-297 A Minimum Parameter Adaptive Approach for Rejecting Multiple Narrow-Band Disturbances With		653202

129	Robot end-effector sensing with position sensitive detector and inertial sensors 2012,		17
128	Compensation of packet loss for a network-based rehabilitation system 2012,		6
127	A network-based monitoring system for rehabilitation 2012,		4
126	Design of a network-based mobile gait rehabilitation system 2012 ,		14
125	Load side state estimation in robot with joint elasticity 2012,		5
124	Design of a Rehabilitation Device Based on a Mechanical Link System. <i>Journal of Mechanisms and Robotics</i> , 2012 , 4,	2.2	6
123	Cancellation of Unnatural Reaction Torque in Variable-Gear-Ratio. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> 2012 , 134,	1.6	11
122	Adaptive Output Regulation for the Rejection of a Periodic Disturbance With an Unknown Frequency. <i>IEEE Transactions on Control Systems Technology</i> , 2011 , 19, 1296-1304	4.8	38
121	Optimization-Based Constrained Iterative Learning Control. <i>IEEE Transactions on Control Systems Technology</i> , 2011 , 19, 1613-1621	4.8	72
120	Time-varying complementary filtering for attitude estimation 2011,		6
			_
119	Control algorithms for prevention of impacts in rehabilitation systems 2011,		4
119	Control algorithms for prevention of impacts in rehabilitation systems 2011, Multiple model adaptive estimation of satellite attitude using MEMS gyros 2011,		4
118	Multiple model adaptive estimation of satellite attitude using MEMS gyros 2011, A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot	1.3	4
118	Multiple model adaptive estimation of satellite attitude using MEMS gyros 2011, A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot 2011, Gait Phase-Based Control for a Rotary Series Elastic Actuator Assisting the Knee Joint. <i>Journal of</i>	1.3	12
118 117 116	Multiple model adaptive estimation of satellite attitude using MEMS gyros 2011, A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot 2011, Gait Phase-Based Control for a Rotary Series Elastic Actuator Assisting the Knee Joint. Journal of Medical Devices, Transactions of the ASME, 2011, 5,	1.3	12 24
118 117 116 115	Multiple model adaptive estimation of satellite attitude using MEMS gyros 2011, A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot 2011, Gait Phase-Based Control for a Rotary Series Elastic Actuator Assisting the Knee Joint. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2011, 5, Time-varying complementary filtering for attitude estimation 2011, Gait phase-based smoothed sliding mode control for a rotary series elastic actuator installed on the	1.3	4 12 24 3

(2009-2010)

111	Robust multi-objective control for systems involving human-in-the-loop passivity constraints with application to electric power steering 2010 ,		2
110	Six-DOF maglev nano precision microstage development 2010 ,		1
109	Convergence Analysis of a Steerable Nip Mechanism for Full Sheet Control in Printing Devices. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2010 , 132,	1.6	2
108	Design of a mobile gait monitoring system 2010 ,		2
107	Full Sheet Control Using Steerable Nips. IEEE/ASME Transactions on Mechatronics, 2010, 15, 48-58	5.5	7
106	Design of the Tracking Controller for Holographic Digital Data Storage. <i>IEEE/ASME Transactions on Mechatronics</i> , 2010 , 15, 242-252	5.5	6
105	Control of an Exoskeleton for Realization of Aquatic Therapy Effects. <i>IEEE/ASME Transactions on Mechatronics</i> , 2010 , 15, 191-200	5.5	22
104	Output Saturation in Electric Motor Systems: Identification and Controller Design. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2010 , 132,	1.6	6
103	A compact rotary series elastic actuator for knee joint assistive system 2010,		2
102	Fuzzy Stabilization of Nonlinear Systems under Sampled-Data Feedback: An Exact Discrete-Time Model Approach. <i>IEEE Transactions on Fuzzy Systems</i> , 2010 ,	8.3	17
101	Global Exponential Stabilization of an Underactuated Nonholonomic Airship. <i>Transactions of the Society of Instrument and Control Engineers</i> , 2009 , 45, 99-104	0.1	3
100	Robotic rehabilitation treatments: Realization of aquatic therapy effects in exoskeleton systems 2009 ,		8
99	Robust engine torque control by iterative learning control 2009,		2
98	Design of iterative learning controller based on frequency domain linear matrix inequality 2009,		6
97	An Iterative Learning Control design for Self-Servowriting in Hard Disk Drives using L1 optimal control 2009 ,		1
96	Iterative learning control with saturation constraints 2009,		9
95	Robust fixed-structure controller design of electric power steering systems 2009,		6
94	Kinematic Kalman Filter (KKF) for Robot End-Effector Sensing. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2009 , 131,	1.6	27

93	The stability of limit cycles in nonlinear systems. <i>Nonlinear Dynamics</i> , 2009 , 56, 269-275	5	18
92	Impedance Compensation of SUBAR for Back-Drivable Force-Mode Actuation. <i>IEEE Transactions on Robotics</i> , 2009 , 25, 512-521	6.5	63
91	A mobile gait monitoring system for gait analysis 2009 ,		19
90	Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human R obot Interaction Applications. <i>IEEE/ASME Transactions on Mechatronics</i> , 2009 , 14, 105-118	5.5	265
89	Projection-Based Iterative Learning Control for Wafer Scanner Systems. <i>IEEE/ASME Transactions on Mechatronics</i> , 2009 , 14, 388-393	5.5	59
88	Control of Exoskeletons Inspired by Fictitious Gain in Human Model. <i>IEEE/ASME Transactions on Mechatronics</i> , 2009 , 14, 689-698	5.5	60
87	DYNAMIC ANALYSES AND ROBUST STEERING CONTROLLER DESIGN FOR AUTOMATED LANE GUIDANCE OF HEAVY-DUTY VEHICLES. <i>Asian Journal of Control</i> , 2008 , 2, 140-154	1.7	5
86	Stability of Controlled Mechanical Systems With Ideal Coulomb Friction. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2008 , 130,	1.6	4
85	Mechanical design and impedance compensation of SUBAR (Sogang University Biomedical Assist Robot) 2008 ,		14
84	Suppression of vibration due to transmission error of harmonic drives using peak filter with acceleration feedback 2008 ,		1
83	OpenSHM: Open Architecture Design of Structural Health Monitoring Software in Wireless Sensor Nodes 2008 ,		2
82	Iterative learning control design for synchronization of wafer and reticle stages 2008,		21
81	Smooth and continuous human gait phase detection based on foot pressure patterns 2008,		22
80	A disturbance observer approach to detecting and rejecting narrow-band disturbances in hard disk drives 2008 ,		6
79	Estimation of abnormalities in a human gait using sensor-embedded shoes 2008,		2
78	Self-tuning control of time-varying systems based on generalized minimum variance criterion 2007,		2
77	Novel Schemes for Repeatable Runout Compensation Using Adaptive Feedforward Cancellation. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	3
76	Segmented iterative learning control for precision positioning of waferstages 2007,		3

Impact of Tire Compliance Behavior to Vehicle Longitudinal Dynamics and Control. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	1
Appropriate Sensor Placement for Fault-Tolerant Lane-Keeping Control of Automated Vehicles. <i>IEEE/ASME Transactions on Mechatronics</i> , 2007 , 12, 465-471	5.5	20
Dynamic Anti-Integrator-Windup Controller Design for Linear Systems With Actuator Saturation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007 , 129, 1-12	1.6	13
Compensation of Dominant Frequency Components of Nonrepeatable Disturbance in Hard Disk Drives. <i>IEEE Transactions on Magnetics</i> , 2007 , 43, 3756-3762	2	19
Flexible Joint Actuator for Patient's Rehabilitation Device 2007,		10
Adaptive rejection of the dominant frequency components of non-repeatable runout in hard disk drives 2007 ,		2
Intelligent Modeling of Thrust Force in Drilling Process. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2006 , 128, 846-855	1.6	12
LIDAR Sensing for Vehicle Lateral Guidance: Algorithm and Experimental Study. <i>IEEE/ASME Transactions on Mechatronics</i> , 2006 , 11, 653-660	5.5	14
Experimental Study on Dynamic Anti-Windup Error Regulator with Observer: A Flexible Robot Arm with Saturating Actuator. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2002 , 35, 135-140		
Coordinated Longitudinal and Lateral Motion Control of Vehicles for IVHS. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2001 , 123, 535-543	1.6	27
A New Approach of Coordinated Motion Control Subjected to Actuator Saturation. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2001 , 123, 496-504	1.6	7
Multi-Rate Feedforward Tracking Control for Plants With Nonminimum Phase Discrete Time Models. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2001 , 123, 55	6- 5 60	5
Algorithm for Three-Step Estimation of Transfer Function with Unknown Delay Steps and Order. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2000 , 33, 373-378		
An Anti-Windup Design for Linear System With Asymptotic Tracking Subjected to Actuator Saturation. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2000 , 122, 369-374	1.6	10
Passivity-Based Versus Disturbance Observer Based Robot Control: Equivalence and Stability. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1999 , 121, 41-47	1.6	66
Coordinated Position Control of Multi-Axis Mechanical Systems. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1998 , 120, 389-393	1.6	67
Adaptive Robust Motion and Force Tracking Control of Robot Manipulators in Contact With Compliant Surfaces With Unknown Stiffness. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1998 , 120, 232-240	1.6	19
Contact Transition Control of Nonlinear Mechanical Systems Subject to a Unilateral Constraint. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1997, 119, 749-759	1.6	20
	the American Control Conference, 2007, Appropriate Sensor Placement For Fault-Tolerant Lane-Keeping Control of Automated Vehicles. IEEE/ASME Transactions on Mechatronics, 2007, 12, 465-471 Dynamic Anti-Integrator-Windup Controller Design for Linear Systems With Actuator Saturation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007, 129, 1-12 Compensation of Dominant Frequency Components of Nonrepeatable Disturbance in Hard Disk Drives. IEEE Transactions on Magnetics, 2007, 43, 3756-3762 Flexible Joint Actuator for Patient's Rehabilitation Device 2007, Adaptive rejection of the dominant frequency components of non-repeatable runout in hard disk drives 2007. Intelligent Modeling of Thrust Force in Drilling Process. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006, 128, 846-855 LIDAR Sensing for Vehicle Lateral Guidance: Algorithm and Experimental Study, IEEE/ASME Transactions on Mechatronics, 2006, 11, 653-660 Experimental Study on Dynamic Anti-Windup Error Regulator with Observer: A Flexible Robot Arm with Saturating Actuator. IFAC Postprint Volumes IPPV International Federation of Automatic Control, 2003, 35, 135-140 Coordinated Longitudinal and Lateral Motion Control of Vehicles for IVHS. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2001, 123, 535-543 A New Approach of Coordinated Motion Control Subjected to Actuator Saturation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2001, 123, 496-504 Multi-Rate Feedforward Tracking Control for Plants With Nonminimum Phase Discrete Time Models. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2001, 123, 596-304 A New Approach of Coordinated Motion of Transfer Function with Unknown Delay Steps and Order. IFAC Postprint Volumes IPPV International Federation of Automatic Control, 2000, 33, 373-378 An Anti-William Processes of Processes, Measurement and Control, Transactions of the ASME, 2000, 1	the American Control Conference, 2007, Appropriate Sensor Placement for Fault-Tolerant Lane-Keeping Control of Automated Vehicles. IEEE/ASME Transactions on Mechatronics, 2007, 12, 465-471 Dynamic Anti-Integrator-Windup Controller Design for Linear Systems With Actuator Saturation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007, 129, 1-12 Compensation of Dominant Frequency Components of Nonrepeatable Disturbance in Hard Disk Drives. IEEE Transactions on Magnetics, 2007, 43, 3756-3762 Flexible Joint Actuator for Patient's Rehabilitation Device 2007, Adaptive rejection of the dominant frequency components of non-repeatable runout in hard disk drives 2007, Intelligent Modeling of Thrust Force in Drilling Process. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006, 128, 846-855 LIDAR Sensing for Vehicle Lateral Guidance: Algorithm and Experimental Study. IEEE/ASME Transactions on Mechatronics, 2006, 11, 653-660 Experimental Study on Dynamic Anti-Windup Error Regulator with Observer: A Flexible Robot Arm with Saturating Actuator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 135-140 Coordinated Longitudinal and Lateral Motion Control of Vehicles for IVHS. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2001, 123, 355-543 A New Approach of Coordinated Motion Control Subjected to Actuator Saturation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2001, 123, 496-504 Multi-Rate Feedforward Tracking Control for Plants With Nonminimum Phase Discrete Time Models. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2001, 123, 556-580 Algorithm for Three-Step Estimation of Transfer Function with Unknown Delay Steps and Order. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 373-378 An Anti-Windup Design for Linear Systems, Measurement and Control, Transactions of the ASME, 1999

57	Smooth Robust Adaptive Sliding Mode Control of Manipulators With Guaranteed Transient Performance. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1996 , 118, 764-775	1.6	146
56	Mechatronics - "What Is It, Why, and How?" An editorial. <i>IEEE/ASME Transactions on Mechatronics</i> , 1996 , 1, 1-4	5.5	106
55	Fuzzy Logic Traction Controllers and their Effect on Longitudinal Vehicle Platoon Systems. <i>Vehicle System Dynamics</i> , 1996 , 25, 277-303	2.8	28
54	Robust digital tracking with perturbation estimation via the Euler operator. <i>International Journal of Control</i> , 1996 , 63, 239-256	1.5	6
53	Robust Wide-Range Controller Using Multirate Estimation and Control for Velocity Regulation and Tracking 1996 , 301-314		0
52	Adaptive Control of Robot Manipulators in Constrained MotionController Design. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1995 , 117, 320-328	1.6	32
51	Robust control of discretized continuous systems using the theory of sliding modes. <i>International Journal of Control</i> , 1995 , 62, 209-226	1.5	21
50	Robust Adaptive and Repetitive Digital Tracking Control and Application to a Hydraulic Servo for Noncircular Machining. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1994 , 116, 24-32	1.6	163
49	A Reusability Study of Vehicle Lateral Control System. Vehicle System Dynamics, 1994, 23, 259-278	2.8	11
48	Disturbance Rejection Through an External Model for Nonminimum Phase Systems. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1994 , 116, 39-44	1.6	23
47	Cancellation of Discrete Time Unstable Zeros by Feedforward Control. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1994 , 116, 33-38	1.6	66
46	A Digital Segmented Repetitive Control Algorithm. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1994 , 116, 577-582	1.6	9
45	On the Design of Digital Tracking Controllers. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1993 , 115, 412-418	1.6	77
44	Preview Control for Vehicle Lateral Guidance in Highway Automation. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> 1993 , 115, 679-686	1.6	74
43	A New Plug-In Adaptive Controller for Rejection of Periodic Disturbances. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> 1993 , 115, 543-546	1.6	15
42	Variable Structure Discrete Time Position Control 1993 ,		3
41	Adaptive Control of Robot Manipulators in Constrained Motion 1993,		17
40	Feedforward digital tracking controllers for motion control applications. <i>Advanced Robotics</i> , 1992 , 7, 575-586	1.7	4

39	Synchronization of Two Motion Control Axes Under Adaptive Feedforward Control. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1992 , 114, 196-203	1.6	128
38	A new bias-compensating LS method for continuous system identification in the presence of coloured noise. <i>International Journal of Control</i> , 1992 , 56, 1441-1452	1.5	24
37	A Fuzzy Tuner for Fuzzy Logic Controllers 1992 ,		8
36	A Comparison of Four Discrete-Time Repetitive Control Algorithms 1992 ,		63
35	A Theoretical and Experimental Study on Vehicle Lateral Control 1992,		19
34	Position/Force Control of Multi-Axis Robot Manipulator based on the TDOF Robust Servo Controller for Each Joint 1992 ,		10
33	Integral Action For Chattering Reduction And Error Convergence in Sliding Mode Control 1992,		4
32	Model reference adaptive control for the azimuth-pointing system of a balloon-borne stabilized platform. <i>International Journal of Adaptive Control and Signal Processing</i> , 1991 , 5, 107-120	2.8	1
31	An Experimental Study on Lateral Control of a Vehicle 1991,		13
30	Design and Implementation of Digital Servo Controller for High Speed Machine Tools 1991,		9
29	Preview Control for Vehicle Lateral Guidance in Highway Automation 1991,		20
28	Noncircular Turning of Workpieces With Sharp Corners. <i>Journal of Engineering for Industry</i> , 1990 , 112, 181-183		1
27	An Adaptive Sliding Mode Vehicle Traction Controller Design 1990 ,		6
26	Vehicle Lateral Control for Highway Automation 1990 ,		131
25	Vehicle lateral velocity and yaw rate control with two independent control inputs 1990,		28
24	Steady-State and Stochastic Performance of a Modified Discrete-Time Prototype Repetitive Controller. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1990 , 112, 35-41	1.6	71
23	A Unified Approach to the Design of Adaptive and Repetitive Controllers for Robotic Manipulators. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1990 , 112, 618-629	1.6	84
22	Disturbance Rejection Through an External Model. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1990 , 112, 559-564	1.6	34

21	Repetitive Control of a Two Degree of Freedom SCARA Manipulator 1989,		4
20	Analysis and Synthesis of Discrete-Time Repetitive Controllers. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1989 , 111, 353-358	1.6	362
19	A Discrete-Time Robust Vehicle Traction Controller Design 1989 ,		6
18	Digital Control Of Repetitive Errors In Disk Drive Systems 1989 ,		6
17	Trajectory Planning for High Speed Multiple Axis Contouring Systems 1989,		8
16	Adaptive Pulse Width Control for Precise Positioning Under the Influence of Stiction and Coulomb Friction. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1988 , 110, 221-227	1.6	109
15	Multirate sampling adaptive control and its application to thermal mixing systems. <i>International Journal of Control</i> , 1988 , 47, 735-744	1.5	6
14	Adaptive And Repetitive Digital Control Algorithms for Noncircular Machining 1988,		38
13	Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers 1988,		77
12	Adaptive Zero Phase Error Tracking Algorithm for Digital Control. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> 1987 , 109, 349-354	1.6	92
11	Zero Phase Error Tracking Algorithm for Digital Control. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1987 , 109, 65-68	1.6	887
10	An Adaptive Control Scheme for Mechanical Manipulators Compensation of Nonlinearity and Decoupling Control. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1986 , 108, 127-135	1.6	76
9	Adaptive Time Optimal Control for Ship Steering. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1986 , 108, 233-239	1.6	2
8	Multivariable Direct Adaptive Control of Thermal Mixing Processes. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1985 , 107, 278-283	1.6	5
7	Application of Model Reference Adaptive Techniques to a Class of Nonlinear Systems. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1981 , 103, 158-163	1.6	3
6	Design of Digital Feedforward/Preview Controllers for Processes With Predetermined Feedback Controllers. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1980 , 102, 218-225	1.6	23
5	On the Optimal Digital State Vector Feedback Controller With Integral and Preview Actions. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1979, 101, 172-178	1.6	77
4	About This Special Issue. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1979 , 101, 89-90	1.6	1

LIST OF PUBLICATIONS

3	Series-Parallel and Parallel Identification Schemes for a Class of Continuous Nonlinear Systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1977 , 99, 137-140	1.6	
2	Man-Machine Systems (Information, Control, and Decision Models of Human Performance). <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1975 , 97, 105-105	1.6	12
1	A lizard-inspired active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot		26