John M Ravits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/727949/publications.pdf Version: 2024-02-01

ΙΟΗΝ Μ ΡΛΛΙΤς

#	Article	IF	CITATIONS
1	Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis withSOD1 mutations. Annals of Neurology, 2007, 61, 427-434.	2.8	840
2	Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nature Neuroscience, 2012, 15, 1488-1497.	7.1	628
3	Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a <i>C9ORF72</i> Repeat Expansion. Science Translational Medicine, 2013, 5, 208ra149.	5.8	586
4	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
5	Targeted degradation of sense and antisense <i>C9orf72</i> RNA foci as therapy for ALS and frontotemporal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4530-9.	3.3	508
6	ALS motor phenotype heterogeneity, focality, and spread. Neurology, 2009, 73, 805-811.	1.5	507
7	RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science, 2016, 353, 603-608.	6.0	448
8	Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron, 2016, 90, 535-550.	3.8	437
9	Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for <i>SOD1</i> ALS. New England Journal of Medicine, 2020, 383, 109-119.	13.9	354
10	Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nature Neuroscience, 2019, 22, 180-190.	7.1	345
11	Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology, 2007, 68, 1571-1575.	1.5	270
12	Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurologic Clinics, 2015, 33, 855-876.	0.8	199
13	Dysregulated mi <scp>RNA</scp> biogenesis downstream of cellular stress and <scp>ALS</scp> â€causing mutations: a new mechanism for <scp>ALS</scp> . EMBO Journal, 2015, 34, 2633-2651.	3.5	176
14	Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes. Annals of Neurology, 2015, 77, 100-113.	2.8	171
15	Aaem minimonograph #48: Autonomic nervous system testing. , 1997, 20, 919-937.		157
16	Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nature Neuroscience, 2020, 23, 615-624.	7.1	157
17	Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathologica, 2018, 135, 459-474.	3.9	152
18	TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nature Neuroscience, 2019, 22, 65-77.	7.1	143

John M Ravits

#	Article	IF	CITATIONS
19	Implications of ALS focality: Rostral-caudal distribution of lower motor neuron loss postmortem. Neurology, 2007, 68, 1576-1582.	1.5	142
20	Deciphering amyotrophic lateral sclerosis: What phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 5-18.	1.1	142
21	Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nature Communications, 2016, 7, 12143.	5.8	137
22	Sporadic ALS has compartment-specific aberrant exon splicing and altered cell–matrix adhesion biology. Human Molecular Genetics, 2010, 19, 313-328.	1.4	114
23	Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Experimental Neurology, 2014, 262, 121-126.	2.0	81
24	Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathologica, 2017, 134, 97-111.	3.9	74
25	Transcriptome–pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathologica, 2018, 136, 405-423.	3.9	69
26	Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathologica, 2017, 133, 79-90.	3.9	68
27	Novel STMN2 Variant Linked to Amyotrophic Lateral Sclerosis Risk and Clinical Phenotype. Frontiers in Aging Neuroscience, 2021, 13, 658226.	1.7	38
28	Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Science Translational Medicine, 2019, 11, .	5.8	37
29	Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Systems, 2021, 12, 159-175.e9.	2.9	33
30	Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics, 2019, 16, 1115-1132.	2.1	30
31	Sporadic amyotrophic lateral sclerosis: A hypothesis of persistent (nonâ€lytic) enteroviral infection. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2005, 6, 77-87.	2.3	26
32	Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread?. Medical Hypotheses, 2015, 85, 576-583.	0.8	22
33	Antisense RNA foci are associated with nucleoli and TDP-43 mislocalization in C9orf72-ALS/FTD: a quantitative study. Acta Neuropathologica, 2019, 137, 527-530.	3.9	21
34	Nucleolar stress in C9orf72 and sporadic ALS spinal motor neurons precedes TDP-43 mislocalization. Acta Neuropathologica Communications, 2021, 9, 26.	2.4	14
35	Nuclear depletion of RNA-binding protein ELAVL3 (HuC) in sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathologica, 2021, 142, 985-1001.	3.9	12
36	Aberrant NOVA1 function disrupts alternative splicing in early stages of amyotrophic lateral sclerosis. Acta Neuropathologica, 2022, 144, 413-435.	3.9	11

John M Ravits

#	Article	IF	CITATIONS
37	Predicting disease specific spinal motor neurons and glia in sporadic ALS. Neurobiology of Disease, 2019, 130, 104523.	2.1	10
38	Current and Future Directions in Genomics of Amyotrophic Lateral Sclerosis. Physical Medicine and Rehabilitation Clinics of North America, 2008, 19, 461-477.	0.7	4
39	Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 657-666.	0.9	4
40	Modeling the neuroanatomic propagation of ALS in the spinal cord. AIP Conference Proceedings, 2017, ,	0.3	0
41	Modeling the neuroanatomic propagation of ALS in the spinal cord. AIP Conference Proceedings, 2017, , .	0.3	0
42	Unraveling molecular biology of C9ORF72 repeat expansions in amyotrophic lateral sclerosis-frontotemporal dementia: Implications for therapy. , 2021, , 19-47.		0