
Russell Dickerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7279348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing of Environment, 2022, 270, 112775.	4.6	174
2	Carbon Monoxide Emissions from the Washington, DC, and Baltimore Metropolitan Area: Recent Trend and COVID-19 Anomaly. Environmental Science & amp; Technology, 2022, 56, 2172-2180.	4.6	7
3	Global to local impacts on atmospheric CO ₂ from the COVID-19 lockdown, biosphere and weather variabilities. Environmental Research Letters, 2022, 17, 015003.	2.2	10
4	Investigation of the Community Multiscale air quality (CMAQ) model representation of the Climate Penalty Factor (CPF). Atmospheric Environment, 2022, 283, 119157.	1.9	3
5	Multidecadal trends in ozone chemistry in the Baltimore-Washington Region. Atmospheric Environment, 2022, 285, 119239.	1.9	4
6	Ground-Level NO ₂ Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence. Environmental Science & Technology, 2022, 56, 9988-9998.	4.6	90
7	Evaluation of a filter-based black carbon (BC) instrument using a brown carbon (BrC) surrogate as well as pure and coated BC surrogates. Aerosol Science and Technology, 2021, 55, 501-511.	1.5	1
8	Volcanic SO ₂ effective layer height retrieval for the Ozone Monitoring Instrument (OMI) using a machine-learning approach. Atmospheric Measurement Techniques, 2021, 14, 3673-3691.	1.2	5
9	Synergistic aircraft and ground observations of transported wildfire smoke and its impact on air quality in New York City during the summer 2018 LISTOS campaign. Science of the Total Environment, 2021, 773, 145030.	3.9	16
10	Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proceedings of the United States of America, 2021, 118, .	3.3	103
11	Airborne Observations of CFCs Over Hebei Province, China in Spring 2016. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035152.	1.2	5
12	Observations of bay-breeze and ozone events over a marine site during the OWLETS-2 campaign. Atmospheric Environment, 2021, 263, 118669.	1.9	10
13	Fluxes of Atmospheric Greenhouseâ€Gases in Maryland (FLAGCâ€MD): Emissions of Carbon Dioxide in the Baltimore, MDâ€Washington, D.C. Area. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032004.	1.2	11
14	Evaluation of thermal optical analysis (TOA) using an aqueous binary mixture. Atmospheric Environment, 2020, 241, 117647.	1.9	5
15	Wintertime CO ₂ , CH ₄ , and CO Emissions Estimation for the Washington, DC–Baltimore Metropolitan Area Using an Inverse Modeling Technique. Environmental Science & Technology, 2020, 54, 2606-2614.	4.6	25
16	Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions. Atmospheric Measurement Techniques, 2020, 13, 1337-1356.	1.2	16
17	Using near-road observations of CO, NOy, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity. Atmospheric Environment, 2020, 232, 117558.	1.9	16
18	Monitoring Neighborhood Concentrations of PM _{2.5} and Black Carbon: When Using Citywide Averages Underestimates Impacts in a Community with Environmental Justice Issues. Environmental Justice, 2020, 13, 27-35.	0.8	3

#	Article	IF	CITATIONS
19	Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China. Atmospheric Chemistry and Physics, 2020, 20, 14523-14545.	1.9	23
20	Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.	1.9	34
21	Fluxes of Atmospheric Greenhouse-Gases in Maryland (FLAGG-MD): Emissions of Carbon Dioxide in the Baltimore, MD-Washington, D.C. area. Journal of Geophysical Research D: Atmospheres, 2020, 125, .	1.2	0
22	On the use of data from commercial NOx analyzers for air pollution studies. Atmospheric Environment, 2019, 214, 116873.	1.9	36
23	Using Shortâ€Term CO/CO ₂ Ratios to Assess Air Mass Differences Over the Korean Peninsula During KORUSâ€AQ. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10951-10972.	1.2	31
24	SO ₂ Emission Estimates Using OMI SO ₂ Retrievals for 2005–2017. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8336-8359.	1.2	47
25	Characterization and demonstration of a black carbon aerosol mimic for instrument evaluation. Aerosol Science and Technology, 2019, 53, 1322-1333.	1.5	7
26	Vertical profiles of NO ₂ , SO ₂ , HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport. Atmospheric Chemistry and Physics, 2019, 19,	1.9	66
27	5417-5449. Measured and modelled ozone photochemical production in the Baltimore-Washington airshed. Atmospheric Environment: X, 2019, 2, 100017.	0.8	5
28	Estimating Methane Emissions From Underground Coal and Natural Gas Production in Southwestern Pennsylvania. Geophysical Research Letters, 2019, 46, 4531-4540.	1.5	32
29	Chemical climatology of atmospheric pollutants in the eastern United States: Seasonal/diurnal cycles and contrast under clear/cloudy conditions for remote sensing. Atmospheric Environment, 2019, 206, 85-107.	1.9	5
30	Linking improvements in sulfur dioxide emissions to decreasing sulfate wet deposition by combining satellite and surface observations with trajectory analysis. Atmospheric Environment, 2019, 199, 210-223.	1.9	14
31	Methane Emissions from the Marcellus Shale in Southwestern Pennsylvania and Northern West Virginia Based on Airborne Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1862-1878.	1.2	26
32	Impact of bay breeze and thunderstorm circulations on surface ozone at a site along the Chesapeake Bay 2011–2016. Atmospheric Environment, 2019, 198, 351-365.	1.9	12
33	Evaluating commercial marine emissions and their role in air quality policy using observations and the CMAQ model. Atmospheric Environment, 2018, 173, 96-107.	1.9	30
34	Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 8995-9010.	1.9	28
35	Topâ€Down Estimates of NO _{<i>x</i>} and CO Emissions From Washington, D.C.â€Baltimore During the WINTER Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7705-7724.	1.2	35
36	Methane Emissions From the Baltimoreâ€Washington Area Based on Airborne Observations: Comparison to Emissions Inventories. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8869-8882.	1.2	43

#	Article	IF	CITATIONS
37	Use of tethersonde and aircraft profiles to study the impact of mesoscale and microscale meteorology on air quality. Atmospheric Environment, 2017, 149, 55-69.	1.9	16
38	Expected ozone benefits of reducing nitrogen oxide (NO _x) emissions from coal-fired electricity generating units in the eastern United States. Journal of the Air and Waste Management Association, 2017, 67, 279-291.	0.9	5
39	The net decay time of anomalies in concentrations of atmospheric pollutants. Atmospheric Environment, 2017, 160, 19-26.	1.9	3
40	Increased atmospheric ammonia over the world's major agricultural areas detected from space. Geophysical Research Letters, 2017, 44, 2875-2884.	1.5	275
41	India Is Overtaking China as the World's Largest Emitter of Anthropogenic Sulfur Dioxide. Scientific Reports, 2017, 7, 14304.	1.6	230
42	Formaldehyde in the Tropical Western Pacific: Chemical Sources and Sinks, Convective Transport, and Representation in CAMâ€Chem and the CCMI Models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11201-11226.	1.2	32
43	Urban emissions of water vapor in winter. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9467-9484.	1.2	18
44	Evaluation and environmental correction of ambient CO ₂ measurements from a low-cost NDIR sensor. Atmospheric Measurement Techniques, 2017, 10, 2383-2395.	1.2	72
45	An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488.	1.2	18
46	Response of SO ₂ and particulate air pollution to local and regional emission controls: A case study in Maryland. Earth's Future, 2016, 4, 94-109.	2.4	38
47	Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin. Scientific Reports, 2016, 6, 36940.	1.6	90
48	CAMx ozone source attribution in the eastern United States using guidance from observations during DISCOVERâ€AQ Maryland. Geophysical Research Letters, 2016, 43, 2249-2258.	1.5	39
49	Ozone production and its sensitivity to NO _{<i>x</i>} and VOCs: results from the DISCOVER-AQ field experiment, Houston 2013. Atmospheric Chemistry and Physics, 2016, 16, 14463-14474.	1.9	85
50	Aura OMI observations of regional SO ₂ and NO ₂ pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics, 2016, 16, 4605-4629.	1.9	521
51	The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmospheric Chemistry and Physics, 2016, 16, 5467-5479.	1.9	127
52	A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications, 2016, 7, 10267.	5.8	33
53	The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia. SpringerBriefs on Pioneers in Science and Practice, 2016, , 197-209.	0.2	1
54	Evidence for an increase in the ozone photochemical lifetime in the eastern United States using a regional air quality model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12778-12793.	1.2	14

#	Article	IF	CITATIONS
55	Ozone and NO _{<i>x</i>} chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI) data. Atmospheric Chemistry and Physics, 2015, 15, 10965-10982.	1.9	84
56	Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations. Atmospheric Environment, 2015, 110, 144-150.	1.9	88
57	Bay breeze influence on surface ozone at Edgewood, MD during July 2011. Journal of Atmospheric Chemistry, 2015, 72, 335-353.	1.4	49
58	Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ. Journal of Atmospheric Chemistry, 2015, 72, 503-521.	1.4	27
59	Measured and modeled CO and NO y in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US. Atmospheric Environment, 2014, 96, 78-87.	1.9	114
60	Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns. Atmospheric Environment, 2014, 84, 9-19.	1.9	48
61	Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export. Journal of Applied Meteorology and Climatology, 2014, 53, 1697-1713.	0.6	70
62	Method for Characterization of Low Molecular Weight Organic Acids in Atmospheric Aerosols Using Ion Chromatography Mass Spectrometry. Analytical Chemistry, 2014, 86, 7328-7336.	3.2	25
63	An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations. Atmospheric Environment, 2014, 85, 18-30.	1.9	33
64	Relationship between column-density and surface mixing ratio: Statistical analysis of O3 and NO2 data from the July 2011 Maryland DISCOVER-AQ mission. Atmospheric Environment, 2014, 92, 429-441.	1.9	46
65	Advancing measurements of tropospheric NO ₂ from space: New algorithm and first global results from OMPS. Geophysical Research Letters, 2014, 41, 4777-4786.	1.5	33
66	Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign. Atmospheric Chemistry and Physics, 2014, 14, 1929-1941.	1.9	37
67	Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. Earth's Future, 2014, 2, 548-558.	2.4	129
68	Emissions estimation from satellite retrievals: A review of current capability. Atmospheric Environment, 2013, 77, 1011-1042.	1.9	323
69	High ozone concentrations on hot days: The role of electric power demand and NO _x emissions. Geophysical Research Letters, 2013, 40, 5291-5294.	1.5	46
70	First observations of SO ₂ from the satellite Suomi NPP OMPS: Widespread air pollution events over China. Geophysical Research Letters, 2013, 40, 4957-4962.	1.5	79
71	Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011. Atmospheric Chemistry and Physics, 2013, 13, 7859-7874.	1.9	55
72	SO ₂ over central China: Measurements, numerical simulations and the tropospheric sulfur budget. Journal of Geophysical Research, 2012, 117, .	3.3	55

#	Article	IF	CITATIONS
73	Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results. Journal of Applied Meteorology and Climatology, 2012, 51, 1775-1793.	0.6	159
74	Aircraft measurements of SO2 and aerosols over northeastern China: Vertical profiles and the influence of weather on air quality. Atmospheric Environment, 2012, 62, 492-501.	1.9	14
75	An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. Journal of Geophysical Research, 2012, 117, .	3.3	311
76	The geostationary remote infrared pollution sounder (GRIPS). , 2012, , .		1
77	Ozone, oxides of nitrogen, and carbon monoxide during pollution events over the eastern United States: An evaluation of emissions and vertical mixing. Journal of Geophysical Research, 2011, 116, .	3.3	49
78	SO ₂ emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. Journal of Geophysical Research, 2011, 116, .	3.3	230
79	Characterization of an eastern U.S. severe air pollution episode using WRF/Chem. Journal of Geophysical Research, 2011, 116, .	3.3	31
80	Aerosol properties over the Indo-Gangetic Plain: A mesoscale perspective from the TIGERZ experiment. Journal of Geophysical Research, 2011, 116, .	3.3	144
81	Impact of Upstream Urbanization on the Urban Heat Island Effects along the Washington–Baltimore Corridor. Journal of Applied Meteorology and Climatology, 2011, 50, 2012-2029.	0.6	95
82	Photoacoustic Measurements of Amplification of the Absorption Cross Section for Coated Soot Aerosols. Aerosol Science and Technology, 2011, 45, 1217-1230.	1.5	67
83	Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation. Atmospheric Environment, 2011, 45, 4060-4072.	1.9	68
84	Changes in seasonal and diurnal cycles of ozone and temperature in the eastern U.S Atmospheric Environment, 2010, 44, 2543-2551.	1.9	83
85	Transport and evolution of a pollution plume from northern China: A satelliteâ€based case study. Journal of Geophysical Research, 2010, 115, .	3.3	34
86	Identification of sources and formation processes of atmospheric sulfate by sulfur isotope and scanning electron microscope measurements. Journal of Geophysical Research, 2010, 115, .	3.3	58
87	Concentrations and origins of atmospheric lead and other trace species at a rural site in northern China. Journal of Geophysical Research, 2010, 115, .	3.3	15
88	Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008. Journal of Geophysical Research, 2010, 115, .	3.3	27
89	Modification of a commercial cavity ring-down spectroscopy NO2 detector for enhanced sensitivity. Review of Scientific Instruments, 2009, 80, 113107.	0.6	12
90	The sensitivity of modeled ozone to the temporal distribution of point, area, and mobile source emissions in the eastern United States. Atmospheric Environment, 2009, 43, 4603-4611.	1.9	13

#	Article	IF	CITATIONS
91	Observed relationships of ozone air pollution with temperature and emissions. Geophysical Research Letters, 2009, 36, .	1.5	237
92	Upstream urbanization exacerbates urban heat island effects. Geophysical Research Letters, 2009, 36, .	1.5	93
93	Origins of chemical pollution derived from Mid-Atlantic aircraft profiles using a clustering technique. Atmospheric Environment, 2008, 42, 1727-1741.	1.9	50
94	Validation of SO ₂ retrievals from the Ozone Monitoring Instrument over NE China. Journal of Geophysical Research, 2008, 113, .	3.3	139
95	Correction to "Aerosol optical properties and their radiative effects in northern China― Journal of Geophysical Research, 2008, 113, .	3.3	3
96	Aerosol optical properties and their radiative effects in northern China. Journal of Geophysical Research, 2007, 112, .	3.3	209
97	In situ measurements of trace gases and aerosol optical properties at a rural site in northern China during East Asian Study of Tropospheric Aerosols: An International Regional Experiment 2005. Journal of Geophysical Research, 2007, 112, .	3.3	91
98	Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EASTâ€AIRE). Journal of Geophysical Research, 2007, 112, .	3.3	151
99	Aircraft observations of dust and pollutants over northeast China: Insight into the meteorological mechanisms of transport. Journal of Geophysical Research, 2007, 112, .	3.3	98
100	In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing. Journal of Geophysical Research, 2007, 112, .	3.3	24
101	A side-by-side comparison of filter-based PM2.5 measurements at a suburban site: A closure study. Atmospheric Environment, 2007, 41, 6167-6184.	1.9	22
102	Aircraft vertical profiles of trace gas and aerosol pollution over the mid-Atlantic United States: Statistics and meteorological cluster analysis. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	99
103	A Combined Approach for the Evaluation of a Volatile Organic Compound Emissions Inventory. Journal of the Air and Waste Management Association, 2006, 56, 169-178.	0.9	4
104	Smoke over haze: Comparative analysis of satellite, surface radiometer, and airborne in situ measurements of aerosol optical properties and radiative forcing over the eastern United States. Journal of Geophysical Research, 2005, 110, .	3.3	8
105	Reply to comment by D. A. Hansen et al. on "The 2003 North American electrical blackout: An accidental experiment in atmospheric chemistry― Geophysical Research Letters, 2005, 32, .	1.5	3
106	New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	58
107	Smoke over haze: Aircraft observations of chemical and optical properties and the effects on heating rates and stability. Journal of Geophysical Research, 2004, 109, .	3.3	42
108	Particulate polycyclic aromatic hydrocarbons in the Atlantic and Indian Ocean atmospheres during the Indian Ocean Experiment and Aerosols99: Continental sources to the marine atmosphere. Journal of Geophysical Research, 2004, 109, .	3.3	25

#	Article	IF	CITATIONS
109	The 2003 North American electrical blackout: An accidental experiment in atmospheric chemistry. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	41
110	Airborne Characterization of the Chemical, Optical, and Meteorological Properties, and Origins of a Combined Ozone-Haze Episode over the Eastern United States. Journals of the Atmospheric Sciences, 2004, 61, 1781-1793.	0.6	33
111	Bulk and size-segregated aerosol composition observed during INDOEX 1999: Overview of meteorology and continental impacts. Journal of Geophysical Research, 2003, 108, .	3.3	31
112	Trace gas and radical diurnal behavior in the marine boundary layer during INDOEX 1999. Journal of Geophysical Research, 2003, 108, .	3.3	28
113	Photolysis frequency of NO2: Measurement and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI). Journal of Geophysical Research, 2003, 108, .	3.3	52
114	Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 2003, 108, .	3.3	109
115	Analysis of a Summertime PM _{2.5} and Haze Episode in the Mid-Atlantic Region. Journal of the Air and Waste Management Association, 2003, 53, 946-956.	0.9	85
116	Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX. Atmospheric Chemistry and Physics, 2003, 3, 267-289.	1.9	128
117	Latitudinal gradients in O3and CO during INDOEX 1999. Journal of Geophysical Research, 2002, 107, INX2 15-1.	3.3	40
118	Analysis of black carbon and carbon monoxide observed over the Indian Ocean: Implications for emissions and photochemistry. Journal of Geophysical Research, 2002, 107, INX2 16-1.	3.3	112
119	Organic trace gas measurements by PTR-MS during INDOEX 1999. Journal of Geophysical Research, 2002, 107, INX2 23-1.	3.3	89
120	Origins of fine aerosol mass in the Baltimore–Washington corridor: implications from observation, factor analysis, and ensemble air parcel back trajectories. Atmospheric Environment, 2002, 36, 4541-4554.	1.9	100
121	Regional air pollution and its radiative forcing: Studies with a single-column chemical and radiation transport model. Journal of Geophysical Research, 2001, 106, 28751-28770.	3.3	17
122	Marine boundary layer peroxy radical chemistry during the AEROSOLS99 campaign: Measurements and analysis. Journal of Geophysical Research, 2001, 106, 20833-20846.	3.3	31
123	Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources. Geophysical Research Letters, 2001, 28, 1711-1714.	1.5	139
124	Source analysis of carbon monoxide pollution during INDOEX 1999. Journal of Geophysical Research, 2001, 106, 28481-28495.	3.3	35
125	The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia. Science, 2001, 291, 1031-1036.	6.0	687
126	Observations of NOy, CO, and SO2and the origin of reactive nitrogen in the eastern United States. Journal of Geophysical Research, 2000, 105, 3553-3563.	3.3	26

#	Article	IF	CITATIONS
127	Nonmethane hydrocarbon mixing ratios in continental outflow air from eastern North America: Export of ozone precursors to Bermuda. Journal of Geophysical Research, 2000, 105, 9981-9990.	3.3	11
128	Determination of the dynamic response of a nitric oxide detector. Review of Scientific Instruments, 1999, 70, 4078-4080.	0.6	1
129	Carbon monoxide in the U.S. mid-Atlantic troposphere: Evidence for a decreasing trend. Geophysical Research Letters, 1999, 26, 2861-2864.	1.5	15
130	Ozone in the remote marine boundary layer: A possible role for halogens. Journal of Geophysical Research, 1999, 104, 21385-21395.	3.3	133
131	Tropospheric O3distribution over the Indian Ocean during spring 1995 evaluated with a chemistry-climate model. Journal of Geophysical Research, 1999, 104, 13881-13893.	3.3	47
132	Transport of ozone and pollutants from North America to the North Atlantic Ocean during the 1996 Atmosphere/Ocean Chemistry Experiment (AEROCE) intensive. Journal of Geophysical Research, 1999, 104, 26219-26233.	3.3	55
133	A Photothermal Interferometer for Gas-Phase Ammonia Detection. Analytical Chemistry, 1999, 71, 1391-1399.	3.2	54
134	Nitric oxide soil emissions from tilled and untilled cornfields. Agricultural and Forest Meteorology, 1998, 90, 307-311.	1.9	21
135	Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure. Journal of Geophysical Research, 1998, 103, 19149-19159.	3.3	148
136	Pollutant Transport During a Regional O3 Episode in the Mid-Atlantic States. Journal of the Air and Waste Management Association, 1998, 48, 786-797.	0.9	59
137	Ground-based and airborne observations of carbon monoxide during NASA Measurements of Air Pollution From Satellite (MAPS) missions SRL-1 and SRL-2. Journal of Geophysical Research, 1998, 103, 19305-19316.	3.3	10
138	Composition of the troposphere over the Indian Ocean during the monsoonal transition. Journal of Geophysical Research, 1997, 102, 18981-18995.	3.3	74
139	The Impact of Aerosols on Solar Ultraviolet Radiation and Photochemical Smog. Science, 1997, 278, 827-830.	6.0	578
140	Climatologies of NOxx and NOy: A comparison of data and models. Atmospheric Environment, 1997, 31, 1851-1904.	1.9	111
141	Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex: 1. Observations. Journal of Geophysical Research, 1996, 101, 6823-6836.	3.3	146
142	Seasonal transition from NOx- to hydrocarbon-limited conditions for ozone production over the eastern United States in September. Journal of Geophysical Research, 1995, 100, 9315.	3.3	150
143	Rate of NO2photolysis from the surface to 7.6 km altitude in clear-sky and clouds. Geophysical Research Letters, 1995, 22, 2621-2624.	1.5	43
144	Large-scale pollution of the atmosphere over the remote Atlantic Ocean: Evidence from Bermuda. Journal of Geophysical Research, 1995, 100, 8945.	3.3	83

#	Article	IF	CITATIONS
145	Observations and tropospheric photochemistry in central North Carolina. Journal of Geophysical Research, 1994, 99, 10553.	3.3	21
146	Convective transport over the central United States and its role in regional CO and ozone budgets. Journal of Geophysical Research, 1994, 99, 18703.	3.3	96
147	Interannual variability over the eastern North Atlantic Ocean: Chemical and meteorological evidence for tropical influence on regional-scale transport in the extratropics. Journal of Geophysical Research, 1994, 99, 22923.	3.3	18
148	Relationship between back trajectories and tropospheric trace gas concentrations in rural Virginia. Atmospheric Environment, 1994, 28, 2789-2800.	1.9	42
149	Nitric oxide production by lightning discharges. Journal of Geophysical Research, 1993, 98, 18333-18338.	3.3	47
150	Nitric oxide emissions from the highâ€ŧemperature viscous boundary layers of hypersonic aircraft within the stratosphere. Journal of Geophysical Research, 1993, 98, 16755-16760.	3.3	8
151	Tropospheric chemistry over the lower Great Plains of the United States. 1. Meteorology. Journal of Geophysical Research, 1992, 97, 17963-17984.	3.3	9
152	Free tropospheric ozone production following entrainment of urban plumes into deep convection. Journal of Geophysical Research, 1992, 97, 17985-18000.	3.3	135
153	Trace gas concentrations and meteorology in rural Virginia: 2. Reactive nitrogen compounds. Journal of Geophysical Research, 1992, 97, 20631-20646.	3.3	26
154	Tropospheric chemistry over the lower Great Plains of the United States 2. Trace gas profiles and distributions. Journal of Geophysical Research, 1992, 97, 20647-20670.	3.3	48
155	Observations of tropospheric trace gases and meteorology in rural Virginia using an unattended monitoring system: Hurricane Hugo (1989), A case study. Journal of Geophysical Research, 1991, 96, 9341-9360.	3.3	10
156	Trace gas concentrations and meteorology in rural Virginia: 1. Ozone and carbon monoxide. Journal of Geophysical Research, 1991, 96, 22461-22475.	3.3	54
157	Reference NO ₂ calibration system for groundâ€based intercomparisons during NASA's GTE/CITE 2 mission. Journal of Geophysical Research, 1990, 95, 10139-10146.	3.3	7
158	Model calculations of tropospheric ozone production potential following observed convective events. Journal of Geophysical Research, 1990, 95, 14049-14062.	3.3	134
159	Clearâ€sky vertical profiles of trace gases as influenced by upstream convective activity. Journal of Geophysical Research, 1989, 94, 14879-14892.	3.3	42
160	Direct measurements of the photolysis rate coefficients and Henry's law constants of several alkyl nitrates. Journal of Geophysical Research, 1989, 94, 14905-14921.	3.3	60
161	A new gas-phase nitric acid calibration system. Environmental Science & Technology, 1989, 23, 106-110.	4.6	11
162	Direct measurements of the photolysis rate coefficient of ethyl nitrate. Geophysical Research Letters, 1988, 15, 1181-1184.	1.5	35

#	Article	IF	CITATIONS
163	Trace gas transport in the vicinity of frontal convective clouds. Journal of Geophysical Research, 1988, 93, 759-773.	3.3	63
164	Modification of a Commercial Gas Filter Correlation CO Detector for Enhanced Sensitivity. Journal of Atmospheric and Oceanic Technology, 1988, 5, 424-431.	0.5	84
165	Thunderstorms: An Important Mechanism in the Transport of Air Pollutants. Science, 1987, 235, 460-465.	6.0	403
166	The flux of reactive nitrogen compounds from eastern North America to the western Atlantic Ocean. Global Biogeochemical Cycles, 1987, 1, 329-343.	1.9	25
167	A groundâ€based intercomparison of NO, NO _{<i>x</i>} , and NO _{<i>y</i>} measurement techniques. Journal of Geophysical Research, 1987, 92, 14710-14722.	3.3	183
168	Dependence of j[O3-O(1D)] on the choice of extraterrestrial solar irradiance data. Environmental Science & Technology, 1987, 21, 505-508.	4.6	7
169	Thunderstorms' role in air pollution. Physics Bulletin, 1987, 38, 292-293.	0.0	0
170	Pollution from automobiles. Nature, 1985, 315, 710-710.	13.7	0
171	Reactive nitrogen compounds in the Arctic. Journal of Geophysical Research, 1985, 90, 10739-10743.	3.3	41
172	Further modification of a commercial NOx detector for high sensitivity. Review of Scientific Instruments, 1984, 55, 1995-1998.	0.6	57
173	Modification of a commerical NOx detector for high sensitivity. Review of Scientific Instruments, 1982, 53, 1899-1902.	0.6	52
174	Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere. Journal of Geophysical Research, 1982, 87, 4933-4946.	3.3	126
175	Precision of nitrogen dioxide photolysis rate measurements. Environmental Science & Technology, 1980, 14, 1261-1262.	4.6	19
176	Qualitative and quantitative flow visualization technique using ozone. Review of Scientific Instruments, 1979, 50, 705-707.	0.6	5
177	Actinometric measurements and theoretical calculations of j(O ₃)the rate of photolysis of ozone to O(¹D). Geophysical Research Letters, 1979, 6, 833-836.	1.5	38
178	NOxProduction in Lightning. Journals of the Atmospheric Sciences, 1977, 34, 143-149.	0.6	184