Sonja M Best

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7279342/publications.pdf

Version: 2024-02-01

94433 102487 4,887 82 37 66 h-index citations g-index papers 93 93 93 7834 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Age-related differences in immune dynamics during SARS-CoV-2 infection in rhesus macaques. Life Science Alliance, 2022, 5, e202101314.	2.8	18
2	Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. Journal of Experimental Medicine, 2022, 219, .	8.5	62
3	The domiNO effect turns macrophage activation deadly. Immunity, 2022, 55, 382-384.	14.3	1
4	MAVS Expression in Alveolar Macrophages Is Essential for Host Resistance against <i>Aspergillus fumigatus</i> . Journal of Immunology, 2022, 209, 346-353.	0.8	5
5	K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathogens, 2021, 17, e1009195.	4.7	227
6	From Capsids to Complexes: Expanding the Role of TRIM5 \hat{l}_{\pm} in the Restriction of Divergent RNA Viruses and Elements. Viruses, 2021, 13, 446.	3.3	8
7	Broadly neutralizing monoclonal antibodies protect against multiple tick-borne flaviviruses. Journal of Experimental Medicine, 2021, 218, .	8.5	22
8	Minipool testing for <scp>SARSâ€CoV</scp> â€2 <scp>RNA</scp> in United States blood donors. Transfusion, 2021, 61, 2384-2391.	1.6	20
9	The liver X receptor agonist LXR 623 restricts flavivirus replication. Emerging Microbes and Infections, 2021, 10, 1378-1389.	6.5	8
10	MyD88 signaling by neurons induces chemokines that recruit protective leukocytes to the virus-infected CNS. Science Immunology, 2021, 6, .	11.9	12
11	Pulmonary infection induces persistent, pathogen-specific lipidomic changes influencing trained immunity. IScience, 2021, 24, 103025.	4.1	5
12	Genome-Wide CRISPR Screen Identifies RACK1 as a Critical Host Factor for Flavivirus Replication. Journal of Virology, 2021, 95, e0059621.	3.4	25
13	Disruption of the Golgi Apparatus and Contribution of the Endoplasmic Reticulum to the SARS-CoV-2 Replication Complex. Viruses, 2021, 13, 1798.	3.3	22
14	Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of African green monkeys. Science Translational Medicine, 2021, 13, .	12.4	146
15	Mitophagy antagonism by ZIKV reveals Ajuba as a regulator of PINK1 signaling, PKR-dependent inflammation, and viral invasion of tissues. Cell Reports, 2021, 37, 109888.	6.4	19
16	A pigtailed macaque model of Kyasanur Forest disease virus and Alkhurma hemorrhagic disease virus pathogenesis. PLoS Pathogens, 2021, 17, e1009678.	4.7	6
17	A single intranasal dose of a live-attenuated parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in hamsters. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,\ldots$	7.1	43
18	The E3 ubiquitin ligase MARCH1 regulates antimalaria immunity through interferon signaling and T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16567-16578.	7.1	26

#	Article	IF	CITATIONS
19	Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature, 2020, 585, 414-419.	27.8	82
20	TRAF6 Plays a Proviral Role in Tick-Borne Flavivirus Infection through Interaction with the NS3 Protease. IScience, 2019, 15, 489-501.	4.1	4
21	TRIM5 \hat{l} ± Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Reports, 2019, 27, 3269-3283.e6.	6.4	53
22	Regulation of type I interferon: It's HIP to be K2. Science Signaling, 2019, 12, .	3.6	3
23	Simian Immunodeficiency Virus Infection of Rhesus Macaques Results in Delayed Zika Virus Clearance. MBio, 2019, 10, .	4.1	4
24	Neuronal maturation reduces the type I IFN response to orthobunyavirus infection and leads to increased apoptosis of human neurons. Journal of Neuroinflammation, 2019, 16, 229.	7.2	22
25	Cutting Edge: CCR2 Is Not Required for Ly6Chi Monocyte Egress from the Bone Marrow but Is Necessary for Migration within the Brain in La Crosse Virus Encephalitis. Journal of Immunology, 2018, 200, 471-476.	0.8	11
26	Role of autophagy in Zika virus infection and pathogenesis. Virus Research, 2018, 254, 34-40.	2.2	101
27	Unique <i>Francisella</i> Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid. Journal of Innate Immunity, 2018, 10, 291-305.	3.8	21
28	The Methyltransferase-Like Domain of Chikungunya Virus nsP2 Inhibits the Interferon Response by Promoting the Nuclear Export of STAT1. Journal of Virology, 2018, 92, .	3.4	40
29	Lethal Zika Virus Disease Models in Young and Older Interferon $\hat{l}\pm/\hat{l}^2$ Receptor Knock Out Mice. Frontiers in Cellular and Infection Microbiology, 2018, 8, 117.	3.9	21
30	An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host and Microbe, 2018, 23, 672-685.e6.	11.0	192
31	A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Medicine, 2018, 10, 58.	8.2	41
32	Tip Your Cap for Ebola Virus Neutralization. Immunity, 2018, 49, 204-206.	14.3	0
33	Immunobiology of Ebola and Lassa virus infections. Nature Reviews Immunology, 2017, 17, 195-207.	22.7	95
34	A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection. Cell Reports, 2017, 18, 816-829.	6.4	26
35	Adaptive Immune Responses to Zika Virus Are Important for Controlling Virus Infection and Preventing Infection in Brain and Testes. Journal of Immunology, 2017, 198, 3526-3535.	0.8	97
36	IFN-Lambda: The Key to Norovirus's Secret Hideaway. Cell Host and Microbe, 2017, 22, 427-429.	11.0	4

#	Article	IF	CITATIONS
37	Sexual and Vertical Transmission of Zika Virus in anti-interferon receptor-treated Rag1-deficient mice. Scientific Reports, 2017, 7, 7176.	3.3	44
38	The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling. Journal of Virology, 2017, 91, .	3.4	179
39	Interferon signaling in Peromyscus leucopus confers a potent and specific restriction to vector-borne flaviviruses. PLoS ONE, 2017, 12, e0179781.	2.5	12
40	Flaviviruses. Current Biology, 2016, 26, R1258-R1260.	3.9	17
41	Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host and Microbe, 2016, 19, 882-890.	11.0	658
42	Clinical Chemistry of Patients With Ebola in Monrovia, Liberia. Journal of Infectious Diseases, 2016, 214, S303-S307.	4.0	7
43	Alisporivir Has Limited Antiviral Effects Against Ebola Virus Strains Makona and Mayinga. Journal of Infectious Diseases, 2016, 214, S355-S359.	4.0	9
44	FAM134B, the Selective Autophagy Receptor for Endoplasmic Reticulum Turnover, Inhibits Replication of Ebola Virus Strains Makona and Mayinga. Journal of Infectious Diseases, 2016, 214, S319-S325.	4.0	66
45	PlasmodiumParasitemia Associated With Increased Survival in Ebola Virus–Infected Patients. Clinical Infectious Diseases, 2016, 63, 1026-1033.	5.8	42
46	Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015. Journal of Infectious Diseases, 2016, 214, S169-S176.	4.0	24
47	Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host and Microbe, 2015, 18, 61-74.	11.0	115
48	Is the third interferon a charm?. Science Translational Medicine, 2015, 7, 284fs16.	12.4	0
49	VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science, 2015, 349, 739-742.	12.6	213
50	Assessing the contribution of interferon antagonism to the virulence of West African Ebola viruses. Nature Communications, 2015, 6, 8000.	12.8	19
51	Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Research, 2014, 42, 9436-9446.	14.5	118
52	Tick-Borne Flaviviruses Antagonize Both IRF-1 and Type I IFN Signaling To Inhibit Dendritic Cell Function. Journal of Immunology, 2014, 192, 2744-2755.	0.8	49
53	Molecular characterization of the small nonstructural proteins of parvovirus Aleutian mink disease virus (AMDV) during infection. Virology, 2014, 452-453, 23-31.	2.4	29
54	Viruses Play Dead to TAMe Interferon Responses. Cell Host and Microbe, 2013, 14, 117-118.	11.0	9

#	Article	IF	Citations
55	Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection. Journal of General Virology, 2013, 94, 336-347.	2.9	33
56	Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection. Ticks and Tick-borne Diseases, 2012, 3, 18-26.	2.7	72
57	Internal polyadenylation of parvoviral precursor mRNA limits progeny virus production. Virology, 2012, 426, 167-177.	2.4	12
58	TRIM79 \hat{l}_{\pm} , an Interferon-Stimulated Gene Product, Restricts Tick-Borne Encephalitis Virus Replication by Degrading the Viral RNA Polymerase. Cell Host and Microbe, 2011, 10, 185-196.	11.0	91
59	Assessing ubiquitination of viral proteins: Lessons from flavivirus NS5. Methods, 2011, 55, 166-171.	3.8	11
60	Identification and Characterization of the Host Protein DNAJC14 as a Broadly Active Flavivirus Replication Modulator. PLoS Pathogens, 2011, 7, e1001255.	4.7	67
61	Antagonism of Type I Interferon Responses by New World Hantaviruses. Journal of Virology, 2010, 84, 11790-11801.	3.4	52
62	The NS5 Protein of the Virulent West Nile Virus NY99 Strain Is a Potent Antagonist of Type I Interferon-Mediated JAK-STAT Signaling. Journal of Virology, 2010, 84, 3503-3515.	3.4	189
63	Marburg Virus Evades Interferon Responses by a Mechanism Distinct from Ebola Virus. PLoS Pathogens, 2010, 6, e1000721.	4.7	152
64	The Capsid Proteins of Aleutian Mink Disease Virus Activate Caspases and Are Specifically Cleaved during Infection. Journal of Virology, 2010, 84, 2687-2696.	3.4	30
65	CS5-4 TRIM79, A novel interferon stimulated gene, restricts flavivirus replication by degrading the viral RNA polymerase. Cytokine, 2010, 52, 70-71.	3.2	0
66	Tick-borne flaviviruses: dissecting host immune responses and virus countermeasures. Immunologic Research, 2009, 43, 172-186.	2.9	60
67	Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology, 2008, 381, 268-276.	2.4	30
68	Viral Subversion of Apoptotic Enzymes: Escape from Death Row. Annual Review of Microbiology, 2008, 62, 171-192.	7.3	145
69	Identification of Residues Critical for the Interferon Antagonist Function of Langat Virus NS5 Reveals a Role for the RNA-Dependent RNA Polymerase Domain. Journal of Virology, 2007, 81, 6936-6946.	3.4	63
70	Tick-borne flavivirus infection in Ixodes scapularis larvae: Development of a novel method for synchronous viral infection of ticks. Virology, 2007, 365, 410-418.	2.4	46
71	Action and reaction: the arthropod-borne flaviviruses and host interferon responses. Future Virology, 2006, 1, 447-459.	1.8	6
72	Pathogenesis of Aleutian Mink Disease Parvovirus and Similarities to B19 Infection. Zoonoses and Public Health, 2005, 52, 331-334.	1.4	19

#	ARTICLE	IF	CITATION
73	Two mink parvoviruses use different cellular receptors for entry into CRFK cells. Virology, 2005, 340, 1-9.	2.4	16
74	Inhibition of Interferon-Stimulated JAK-STAT Signaling by a Tick-Borne Flavivirus and Identification of NS5 as an Interferon Antagonist. Journal of Virology, 2005, 79, 12828-12839.	3.4	272
75	Aleutian mink disease parvovirus. , 2005, , 457-471.		1
76	Caspase activation during virus infection: more than just the kiss of death?. Virology, 2004, 320, 191-194.	2.4	38
77	Caspase Cleavage of the Nonstructural Protein NS1 Mediates Replication of Aleutian Mink Disease Parvovirus. Journal of Virology, 2003, 77, 5305-5312.	3.4	54
78	Caspase Activation Is Required for Permissive Replication of Aleutian Mink Disease Parvovirus in Vitro. Virology, 2002, 292, 224-234.	2.4	43
79	Identification of Aleutian Mink Disease Parvovirus Capsid Sequences Mediating Antibody-Dependent Enhancement of Infection, Virus Neutralization, and Immune Complex Formation. Journal of Virology, 2001, 75, 11116-11127.	3.4	44
80	Coevolution of Host and Virus: Cellular Localization of Virus in Myxoma Virus Infection of Resistant and Susceptible European Rabbits. Virology, 2000, 277, 76-91.	2.4	59
81	Coevolution of Host and Virus: The Pathogenesis of Virulent and Attenuated Strains of Myxoma Virus in Resistant and Susceptible European Rabbits. Virology, 2000, 267, 36-48.	2.4	128
82	Mitophagy Antagonism by Zika Virus Reveals Ajuba as a Regulator of PINK1-Parkin Signaling, PKR-Dependent Inflammation, and Viral Invasion of Tissues. SSRN Electronic Journal, 0, , .	0.4	1