Steven M Tobias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7279085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Active Sun Throughout the Maunder Minimum. Solar Physics, 1998, 181, 237-249.	1.0	351
2	Transport and Storage of Magnetic Field by Overshooting Turbulent Compressible Convection. Astrophysical Journal, 2001, 549, 1183-1203.	1.6	214
3	Chaotically modulated stellar dynamos. Monthly Notices of the Royal Astronomical Society, 1995, 273, 1150-1166.	1.6	124
4	Modulation and symmetry changes in stellar dynamos. Monthly Notices of the Royal Astronomical Society, 1998, 297, 1123-1138.	1.6	112
5	Pumping of Magnetic Fields by Turbulent Penetrative Convection. Astrophysical Journal, 1998, 502, L177-L180.	1.6	106
6	Convective and absolute instabilities of fluid flows in finite geometry. Physica D: Nonlinear Phenomena, 1998, 113, 43-72.	1.3	99
7	For how long will the current grand maximum of solar activity persist?. Geophysical Research Letters, 2008, 35, .	1.5	99
8	Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae. Nature, 2002, 420, 390-393.	13.7	97
9	The Origin of Penumbral Structure in Sunspots: Downward Pumping of Magnetic Flux. Astrophysical Journal, 2004, 600, 1073-1090.	1.6	86
10	On Predicting the Solar Cycle Using Mean-Field Models. Astrophysical Journal, 2007, 661, 1289-1296.	1.6	86
11	Direct Statistical Simulation of Out-of-Equilibrium Jets. Physical Review Letters, 2013, 110, 104502.	2.9	86
12	A multiscale dynamo model driven by quasi-geostrophic convection. Journal of Fluid Mechanics, 2015, 780, 143-166.	1.4	83
13	β-Plane Magnetohydrodynamic Turbulence in the Solar Tachocline. Astrophysical Journal, 2007, 667, L113-L116.	1.6	79
14	ASTROPHYSICAL FLUID DYNAMICS VIA DIRECT STATISTICAL SIMULATION. Astrophysical Journal, 2011, 727, 127.	1.6	74
15	Sensitivity of stratified turbulence to the buoyancy Reynolds number. Journal of Fluid Mechanics, 2013, 725, 1-22.	1.4	67
16	Dynamo properties of the turbulent velocity field of a saturated dynamo. Journal of Fluid Mechanics, 2009, 621, 205-214.	1.4	65
17	Shear-driven dynamo waves at high magnetic Reynolds number. Nature, 2013, 497, 463-465.	13.7	64
18	Linear and nonlinear dynamo properties of time-dependent ABC flows. Fluid Dynamics Research, 2001, 28, 237-265.	0.6	63

#	Article	IF	CITATIONS
19	Generalized Quasilinear Approximation: Application to Zonal Jets. Physical Review Letters, 2016, 116, 214501.	2.9	61
20	The Solar Dynamo. Space Science Reviews, 2010, 152, 591-616.	3.7	59
21	Supermodulation of the Sun's magnetic activity: the effects of symmetry changes. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2654-2661.	1.6	59
22	The Competition in the Solar Dynamo between Surface and Deep-seated α-Effects. Astrophysical Journal, 2002, 580, L89-L92.	1.6	58
23	Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics. Space Science Reviews, 2015, 194, 97-137.	3.7	56
24	The solar dynamo. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2741-2756.	1.6	55
25	The transition to Earth-like torsional oscillations in magnetoconvection simulations. Earth and Planetary Science Letters, 2015, 419, 22-31.	1.8	55
26	Diffusivity Quenching as a Mechanism for Parker's Surface Dynamo. Astrophysical Journal, 1996, 467, 870.	1.6	52
27	Physical Causes of Solar Activity. Space Science Reviews, 2000, 94, 99-112.	3.7	51
28	αEffect in a Family of Chaotic Flows. Physical Review Letters, 2006, 96, 034503.	2.9	51
29	The turbulent dynamo. Journal of Fluid Mechanics, 2021, 912, .	1.4	51
30	Breakup of Spiral Waves into Chemical Turbulence. Physical Review Letters, 1998, 80, 4811-4814.	2.9	49
31	Asymptotic properties of a nonlinéar αï‰-dynamo wave: Period, amplitude and latitude dependence. Geophysical and Astrophysical Fluid Dynamics, 1997, 86, 249-285.	0.4	41
32	The solar dynamo and the tachocline. , 2007, , 319-350.		40
33	Dynamo action in complex flows: the quick and the fast. Journal of Fluid Mechanics, 2008, 601, 101-122.	1.4	40
34	ENERGY DISSIPATION IN MAGNETOHYDRODYNAMIC TURBULENCE: COHERENT STRUCTURES OR "NANOFLARES�. Astrophysical Journal, 2014, 795, 127.	1.6	40
35	Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers. Physical Review Fluids, 2016, 1, .	1.0	40
36	On the instability of magnetohydrodynamic shear flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 1365-1384.	1.0	38

#	Article	IF	CITATIONS
37	Convective Dynamos with Penetration, Rotation, and Shear. Astrophysical Journal, 2008, 685, 596-605.	1.6	36
38	Convective dynamo action in a spherical shell: symmetries and modulation. Journal of Fluid Mechanics, 2016, 799, .	1.4	36
39	On long-term modulation of the Sun's magnetic cycle. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1596-1602.	1.6	34
40	Flux expulsion with dynamics. Journal of Fluid Mechanics, 2016, 791, 568-588.	1.4	33
41	The Influence of Velocity Shear on Magnetic Buoyancy Instability in the Solar Tachocline. Astrophysical Journal, 2004, 603, 785-802.	1.6	32
42	Unpredictable Sun leaves researchers in the dark. Nature, 2006, 442, 26-26.	13.7	32
43	Rotating magnetic shallow water waves and instabilities in a sphere. Geophysical and Astrophysical Fluid Dynamics, 2017, 111, 282-322.	0.4	31
44	Topological Gaseous Plasmon Polariton in Realistic Plasma. Physical Review Letters, 2020, 124, 195001.	2.9	31
45	Scaling behaviour in spherical shell rotating convection with fixed-flux thermal boundary conditions. Journal of Fluid Mechanics, 2020, 889, .	1.4	31
46	ON LARGE-SCALE DYNAMO ACTION AT HIGH MAGNETIC REYNOLDS NUMBER. Astrophysical Journal, 2014, 789, 70.	1.6	30
47	The dynamics and excitation of torsional waves in geodynamo simulations. Geophysical Journal International, 2014, 196, 724-735.	1.0	30
48	Low-order stellar dynamo models. Monthly Notices of the Royal Astronomical Society, 2005, 363, 1167-1172.	1.6	28
49	Three-dimensional rotating Couette flow via the generalised quasilinear approximation. Journal of Fluid Mechanics, 2017, 810, 412-428.	1.4	28
50	Modulation of solar and stellar dynamos. Astronomische Nachrichten, 2002, 323, 417-423.	0.6	27
51	Heat transfer and flow regimes in quasi-static magnetoconvection with a vertical magnetic field. Journal of Fluid Mechanics, 2019, 877, 1186-1206.	1.4	27
52	A simple system for moist convection: theÂRainy–Bénard model. Journal of Fluid Mechanics, 2019, 862, 162-199.	1.4	26
53	Global Magnetorotational Instability with Inflow. I. Linear Theory and the Role of Boundary Conditions. Astrophysical Journal, 2004, 602, 892-903.	1.6	26
54	Flux Pumping and Magnetic Fields in the Outer Penumbra of a Sunspot. Astrophysical Journal, 2008, 686, 1454-1465.	1.6	26

#	Article	IF	CITATIONS
55	Limited Role of Spectra in Dynamo Theory: Coherent versus Random Dynamos. Physical Review Letters, 2008, 101, 125003.	2.9	25
56	ON THE GENERATION OF ORGANIZED MAGNETIC FIELDS. Astrophysical Journal, 2011, 728, 153.	1.6	25
57	The Nonlinear Evolution of Instabilities Driven by Magnetic Buoyancy: A New Mechanism for the Formation of Coherent Magnetic Structures. Astrophysical Journal, 2007, 663, L113-L116.	1.6	23
58	Linear and nonlinear dynamo action. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 249, 437-442.	0.9	21
59	Interaction between dynamos at different scales. Physics of Fluids, 2005, 17, 127105.	1.6	18
60	Comparison of the anelastic approximation with fully compressible equations for linear magnetoconvection and magnetic buoyancy. Geophysical and Astrophysical Fluid Dynamics, 2010, 104, 545-563.	0.4	18
61	What is a large-scale dynamo?. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L119-L123.	1.2	18
62	Nonlinear magnetoconvection in the presence of strong oblique fields. Journal of Fluid Mechanics, 2000, 410, 285-322.	1.4	17
63	The Solar Dynamo: The Role of Penetration, Rotation and Shear on Convective Dynamos. Space Science Reviews, 2009, 144, 77-86.	3.7	17
64	Noise-sustained structures due to convective instability in finite domains. Physica D: Nonlinear Phenomena, 2000, 145, 191-206.	1.3	16
65	Vortex dynamos. Journal of Fluid Mechanics, 2004, 498, 1-21.	1.4	16
66	Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers: Single mode solutions. Physical Review E, 2016, 93, 023115.	0.8	16
67	The role of helicity and stretching in forced kinematic dynamos in a spherical shell. Physics of Fluids, 2007, 19, 057101.	1.6	15
68	Transient spatio-temporal chaos in the complex Ginzburg–Landau equation on long domains. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2030-2034.	0.9	15
69	Two-dimensional magnetohydrodynamic turbulence in the small magnetic Prandtl number limit. Journal of Fluid Mechanics, 2012, 703, 85-98.	1.4	14
70	SHEAR-DRIVEN DYNAMO WAVES IN THE FULLY NONLINEAR REGIME. Astrophysical Journal, 2016, 825, 23.	1.6	14
71	Angular momentum transport by the GSF instability: non-linear simulations at the equator. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1777-1794.	1.6	14

72 MHD Dynamos and Turbulence. , 2012, , 351-404.

#	Article	IF	CITATIONS
73	Forcing-dependent dynamics and emergence of helicity in rotating turbulence. Journal of Fluid Mechanics, 2016, 798, 682-695.	1.4	13
74	The effects of flux transport on interface dynamos. Monthly Notices of the Royal Astronomical Society, 2008, 391, 467-480.	1.6	11
75	Dynamo efficiency in compressible convective dynamos with and without penetration. Geophysical and Astrophysical Fluid Dynamics, 2010, 104, 565-576.	0.4	11
76	On the measurement of the turbulent diffusivity of a large-scale magnetic field. Journal of Fluid Mechanics, 2013, 717, 347-360.	1.4	11
77	Inertia-less convectively-driven dynamo models in the limit of low Rossby number and large Prandtl number. Physics of the Earth and Planetary Interiors, 2017, 266, 54-59.	0.7	11
78	The effect of Schmidt number on gravity current flows: The formation of large-scale three-dimensional structures. Physics of Fluids, 2021, 33, .	1.6	11
79	Mean flow generation in rotating anelastic two-dimensional convection. Physics of Fluids, 2016, 28, .	1.6	10
80	Generalised quasilinear approximation of the helical magnetorotational instability. Journal of Plasma Physics, 2016, 82, .	0.7	10
81	Dimensional reduction of direct statistical simulation. Journal of Fluid Mechanics, 2020, 898, .	1.4	10
82	Scaling behaviour of small-scale dynamos driven by Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2021, 915, .	1.4	10
83	Hydrodynamic instabilities in the solar tachocline. Astronomy and Astrophysics, 2008, 488, 819-827.	2.1	10
84	The puzzling structure of a sunspot. Astronomy and Geophysics, 2004, 45, 4.28-4.33.	0.1	9
85	Mean induction and diffusion: the influence of spatial coherence. Journal of Fluid Mechanics, 2009, 627, 403-421.	1.4	9
86	The effect of stratification and compressibility on anelastic convection in a rotating plane layer. Geophysical and Astrophysical Fluid Dynamics, 2011, 105, 566-585.	0.4	9
87	Direct Statistical Simulation of a Jet. , 2019, , 332-346.		9
88	Torsional waves driven by convection and jets in Earth's liquid core. Geophysical Journal International, 2019, 216, 123-129.	1.0	9
89	Angular momentum transport, layering, and zonal jet formation by the CSF instability: non-linear simulations at a general latitude. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1468-1490.	1.6	9
90	Potential vorticity transport in weakly and strongly magnetized plasmas. Physics of Plasmas, 2021, 28, 042301.	0.7	9

#	Article	IF	CITATIONS
91	On the fine structure of magnetic fields in sunspot penumbrae. Astronomy and Astrophysics, 2006, 452, 1089-1090.	2.1	9
92	Magnetic flux pumping and the structure of a sunspot penumbra. Astronomische Nachrichten, 2002, 323, 383-386.	0.6	8
93	Large-scale convective dynamos in a stratified rotating plane layer. Geophysical and Astrophysical Fluid Dynamics, 2013, 107, 218-243.	0.4	8
94	Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos. Physics of Fluids, 2010, 22, 037101.	1.6	7
95	Self-consistent single mode investigations of the quasi-geostrophic convection-driven dynamo model. Journal of Plasma Physics, 2018, 84, .	0.7	7
96	The electromotive force in multi-scale flows at high magnetic Reynolds number. Journal of Plasma Physics, 2015, 81, .	0.7	6
97	Convection-driven kinematic dynamos with a self-consistent shear flow. Geophysical and Astrophysical Fluid Dynamics, 2019, 113, 131-148.	0.4	6
98	Parallel-in-time integration of kinematic dynamos. Journal of Computational Physics: X, 2020, 7, 100057.	1.1	6
99	THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE. Astrophysical Journal, 2016, 823, 111.	1.6	6
100	Direct statistical simulation of jets and vortices in 2D flows. Physics of Fluids, 2017, 29, .	1.6	5
101	Dynamics of an idealized fluid model for investigating convective-scale data assimilation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2017, 69, 1369332.	0.8	5
102	Circulation conservation and vortex breakup in magnetohydrodynamics at low magnetic PrandtlÂnumber. Journal of Fluid Mechanics, 2018, 857, 38-60.	1.4	5
103	Observations of large-scale coherent structures in gravity currents: implications for flow dynamics. Experiments in Fluids, 2021, 62, 1.	1.1	5
104	Direct statistical simulation of low-order dynamosystems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	5
105	Characterising the shape, size, and orientation of cloudâ€feeding coherent boundaryâ€layer structures. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 499-519.	1.0	5
106	Global Magnetorotational Instability with Inflow. II. The Nonlinear Development of Axisymmetric Wall Modes. Astrophysical Journal, 2006, 638, 382-390.	1.6	4
107	Bistability in the complex Ginzburg–Landau equation with drift. Physica D: Nonlinear Phenomena, 2009, 238, 184-196.	1.3	4
108	Generalized quasilinear approximation of the interaction of convection and mean flows in a thermal annulus. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180422.	1.0	4

#	Article	IF	CITATIONS
109	Dynamics of spatially localized states in transitional plane Couette flow. Journal of Fluid Mechanics, 2019, 867, 414-437.	1.4	4
110	Scale Selection in the Stratified Convection of the Solar Photosphere. Astrophysical Journal, 2019, 874, 103.	1.6	4
111	Joint instability and abrupt nonlinear transitions in a differentially rotating plasma. Journal of Plasma Physics, 2019, 85, .	0.7	4
112	Performance of parallel-in-time integration for Rayleigh Bénard convection. Computing and Visualization in Science, 2020, 23, 1.	1.2	4
113	On magnetic helicity generation and transport in a nonlinear dynamo driven by a helical flow. Journal of Plasma Physics, 2020, 86, .	0.7	4
114	Solitary magnetostrophic Rossby waves in spherical shells. Journal of Fluid Mechanics, 2020, 904, .	1.4	4
115	Resonance in a coupled solar-climate model. Space Science Reviews, 2000, 94, 153-160.	3.7	3
116	Data assimilation approach to analysing systems of ordinary differential equations. , 2018, , .		3
117	A probabilistic protocol for the assessment of transition and control. Journal of Fluid Mechanics, 2020, 895, .	1.4	3
118	The Solar Dynamo. Space Sciences Series of ISSI, 2009, , 591-616.	0.0	3
119	Thermal boundary layer structure in convection with and without rotation. Physical Review Fluids, 2020, 5, .	1.0	3
120	Efficiency gains of a multi-scale integration method applied to a scale-separated model for rapidly rotating dynamos. Computer Physics Communications, 2022, 273, 108253.	3.0	3
121	Direct statistical simulation of the Lorenz63 system. Chaos, 2022, 32, 043111.	1.0	3
122	Skew-varicose instability in two-dimensional generalized Swift-Hohenberg equations. Physical Review E, 2011, 84, 036201.	0.8	2
123	Nonperturbative mean-field theory for minimum enstrophy relaxation. Physical Review E, 2015, 91, 053024.	0.8	2
124	Generation of shear flows and vortices in rotating anelastic convection. Physical Review Fluids, 2020, 5, .	1.0	2
125	Ion heat and parallel momentum transport by stochastic magnetic fields and turbulence. Plasma Physics and Controlled Fusion, 2022, 64, 015006.	0.9	2
126	Nonlinear magnetoconvection in the presence of a strong oblique field. , 2003, , 345-356.		1

8

#	Article	IF	CITATIONS
127	On the measurement of turbulent magnetic diffusivities: the three-dimensional case. Journal of Fluid Mechanics, 2013, 735, 457-472.	1.4	1
128	Modulation and Symmetry-Breaking in Low-Order Models of the Solar Dynamo. , 2001, , 381-390.		1
129	The Solar Dynamo: The Role of Penetration, Rotation and Shear on Convective Dynamos. Space Sciences Series of ISSI, 2008, , 77-86.	0.0	1
130	An Idealized 1¼-Layer Isentropic Model with Convection and Precipitation for Satellite Data Assimilation Research. Part I: Model Dynamics. Journals of the Atmospheric Sciences, 2022, 79, 859-873.	0.6	1
131	An Idealized 1¼2-Layer Isentropic Model with Convection and Precipitation for Satellite Data Assimilation Research. Part II: Model Derivation. Journals of the Atmospheric Sciences, 2022, 79, 875-886.	0.6	1
132	Optimizing the control of transition to turbulence using a Bayesian method. Journal of Fluid Mechanics, 2022, 941, .	1.4	1
133	Magnetic Pumping at the Base of the Solar Convection Zone. Symposium - International Astronomical Union, 2001, 203, 156-158.	0.1	0
134	An Introduction to Mean Field Dynamo Theory. , 2009, , 15-48.		0
135	The Effect of Small Scale Motion on an Essentially-Nonlinear Dynamo. Proceedings of the International Astronomical Union, 2010, 6, 367-368.	0.0	0
136	Nigel Weiss (1936–2020). Astronomy and Geophysics, 2020, 61, 5.11-5.11.	0.1	0
137_	THE SOLAR DYNAMO. Series on Iraq War and Its Consequences, 2005, , 355-373.	0.1	0