Jessica Giordano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7278659/publications.pdf

Version: 2024-02-01

		13865	17105
136	15,380	67	122
papers	citations	h-index	g-index
140	140	140	18087
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Nrf2 Mutation/Activation Is Dispensable for the Development of Chemically Induced Mouse HCC. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 113-127.	4.5	4
2	A novel strategy for combination of clofarabine and pictilisib is synergistic in gastric cancer. Translational Oncology, 2022, 15, 101260.	3.7	3
3	Sézary Syndrome: Different Erythroderma Morphological Features with Proposal for a Clinical Score System. Cells, 2022, 11, 333.	4.1	1
4	Diverse MicroRNAsâ€mRNA networks regulate the priming phase of mouse liver regeneration and of direct hyperplasia. Cell Proliferation, 2022, 55, e13199.	5.3	2
5	A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine. Nature Communications, 2022, 13, 1503.	12.8	22
6	hOA-DN30: a highly effective humanized single-arm MET antibody inducing remission of â€~MET-addicted' cancers. Journal of Experimental and Clinical Cancer Research, 2022, 41, 112.	8.6	5
7	Extensive "halo naevi―phenomenon and regression of melanin during nivolumab treatment in metastatic melanoma: A predictor of a better outcome?. Dermatologic Therapy, 2022, 35, e15559.	1.7	1
8	The Tumor-Specific Expression of L1 Retrotransposons Independently Correlates with Time to Relapse in Hormone-Negative Breast Cancer Patients. Cells, 2022, 11, 1944.	4.1	0
9	Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nature Genetics, 2021, 53, 86-99.	21.4	118
10	Optimized EGFR Blockade Strategies in <i>EGFR</i> Addicted Gastroesophageal Adenocarcinomas. Clinical Cancer Research, 2021, 27, 3126-3140.	7.0	11
11	Personalized therapeutic strategies in HER2-driven gastric cancer. Gastric Cancer, 2021, 24, 897-912.	5.3	6
12	Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treatment Reviews, 2021, 95, 102175.	7.7	88
13	Chest wall infiltration is a critical prognostic factor in breast implant-associated anaplastic large-cell lymphoma affected patients. European Journal of Cancer, 2021, 148, 277-286.	2.8	7
14	Molecularly Targeted Therapies for Gastric Cancer. State of the Art. Cancers, 2021, 13, 4094.	3.7	10
15	FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma. Journal of Hepatology, 2021, 75, 351-362.	3.7	35
16	Immune Check Point Inhibitors in Primary Cutaneous T-Cell Lymphomas: Biologic Rationale, Clinical Results and Future Perspectives. Frontiers in Oncology, 2021, 11, 733770.	2.8	13
17	Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers, 2020, 12, 2932.	3.7	12
18	MiR-100 is a predictor of endocrine responsiveness and prognosis in patients with operable luminal breast cancer. ESMO Open, 2020, 5, e000937.	4.5	10

#	Article	IF	Citations
19	Distinct Mechanisms Are Responsible for Nrf2-Keap1 Pathway Activation at Different Stages of Rat Hepatocarcinogenesis. Cancers, 2020, 12, 2305.	3.7	14
20	Autocrine Signaling of NRP1 Ligand Galectin-1 Elicits Resistance to BRAF-Targeted Therapy in Melanoma Cells. Cancers, 2020, 12, 2218.	3.7	10
21	Clinical Implications of DNA Repair Defects in High-Grade Serous Ovarian Carcinomas. Cancers, 2020, 12, 1315.	3.7	18
22	Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming. Journal of Hepatology, 2020, 72, 1159-1169.	3.7	38
23	Potential role of two novel agonists of thyroid hormone receptor $\hat{a} \in \hat{I}^2$ on liver regeneration. Cell Proliferation, 2020, 53, e12808.	5. 3	13
24	Patient-Derived Orthotopic Xenograft models in gastric cancer: a systematic review. Updates in Surgery, 2020, 72, 951-966.	2.0	14
25	Clustered protocadherins methylation alterations in cancer. Clinical Epigenetics, 2019, 11, 100.	4.1	33
26	A Comprehensive PDX Gastric Cancer Collection Captures Cancer Cell–Intrinsic Transcriptional MSI Traits. Cancer Research, 2019, 79, 5884-5896.	0.9	53
27	The landscape of d16HER2 splice variant expression across HER2-positive cancers. Scientific Reports, 2019, 9, 3545.	3.3	22
28	BRAF and MEK Inhibitors Increase PD-1-Positive Melanoma Cells Leading to a Potential Lymphocyte-Independent Synergism with Anti–PD-1 Antibody. Clinical Cancer Research, 2018, 24, 3377-3385.	7.0	31
29	Colorectal cancer early methylation alterations affect the crosstalk between cell and surrounding environment, tracing a biomarker signature specific for this tumor. International Journal of Cancer, 2018, 143, 907-920.	5.1	41
30	Rituximab Treatment Prevents Lymphoma Onset in Gastric Cancer Patient-Derived Xenografts. Neoplasia, 2018, 20, 443-455.	5.3	17
31	Downregulating Neuropilin-2 Triggers a Novel Mechanism Enabling EGFR-Dependent Resistance to Oncogene-Targeted Therapies. Cancer Research, 2018, 78, 1058-1068.	0.9	25
32	Biomarkers of Primary Resistance to Trastuzumab in HER2-Positive Metastatic Gastric Cancer Patients: the AMNESIA Case-Control Study. Clinical Cancer Research, 2018, 24, 1082-1089.	7.0	76
33	Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies. Cell Metabolism, 2018, 28, 848-865.e6.	16.2	184
34	miRâ€205 mediates adaptive resistance to <scp>MET</scp> inhibition via <scp>ERRFI</scp> 1 targeting and raised <scp>EGFR</scp> signaling. EMBO Molecular Medicine, 2018, 10, .	6.9	23
35	Neuropilin-1 upregulation elicits adaptive resistance to oncogene-targeted therapies. Journal of Clinical Investigation, 2018, 128, 3976-3990.	8.2	50
36	Mechanisms of Resistance to Molecular Therapies Targeting the HGF/MET Axis. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 67-87.	0.1	0

#	Article	IF	Citations
37	YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC. Neoplasia, 2017, 19, 1012-1021.	5.3	77
38	Dual MET/EGFR therapy leads to complete response and resistance prevention in a MET-amplified gastroesophageal xenopatient cohort. Oncogene, 2017, 36, 1200-1210.	5.9	28
39	Targeted therapies for gastric cancer: failures and hopes from clinical trials. Oncotarget, 2017, 8, 57654-57669.	1.8	99
40	Editorial: Metabolism As a Therapeutic Target. Frontiers in Oncology, 2017, 7, 266.	2.8	3
41	A long term, non-tumorigenic rat hepatocyte cell line and its malignant counterpart, as tools to study hepatocarcinogenesis. Oncotarget, 2017, 8, 15716-15731.	1.8	5
42	Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget, 2016, 7, 32375-32393.	1.8	83
43	miRs*: Innocent bystanders only?. Hepatology, 2016, 64, 1424-1426.	7.3	0
44	The Dual Roles of NRF2 in Cancer. Trends in Molecular Medicine, 2016, 22, 578-593.	6.7	508
45	How Can Gastric Cancer Molecular Profiling Guide Future Therapies?. Trends in Molecular Medicine, 2016, 22, 534-544.	6.7	50
46	The metabolic gene HAO2 is downregulated in hepatocellular carcinoma and predicts metastasis and poor survival. Journal of Hepatology, 2016, 64, 891-898.	3.7	34
47	Nrf2, but not βâ€catenin, mutation represents an early event in rat hepatocarcinogenesis. Hepatology, 2015, 62, 851-862.	7.3	81
48	Reply to: "YAP in tumorigenesis: Friend or foe?― Journal of Hepatology, 2015, 62, 1445.	3.7	1
49	Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats. Hepatology, 2015, 61, 249-259.	7.3	63
50	By promoting cell differentiation, miR-100 sensitizes basal-like breast cancer stem cells to hormonal therapy. Oncotarget, 2015, 6, 2315-2330.	1.8	43
51	Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget, 2015, 6, 5182-5194.	1.8	72
52	Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis. Oncotarget, 2015, 6, 38749-38763.	1.8	24
53	Met as a therapeutic target in HCC: Facts and hopes. Journal of Hepatology, 2014, 60, 442-452.	3.7	150
54	MicroRNA/gene profiling unveils early molecular changes and nuclear factor erythroid related factor 2 (NRF2) activation in a rat model recapitulating human hepatocellular carcinoma (HCC). Hepatology, 2014, 59, 228-241.	7.3	107

#	Article	IF	CITATIONS
55	Increase of <i>MET</i> gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Molecular Oncology, 2014, 8, 1561-1574.	4.6	15
56	Targeted therapies in cancer and mechanisms of resistance. Journal of Molecular Medicine, 2014, 92, 677-679.	3.9	6
57	YAP activation is an early event and a potential therapeutic target in liver cancer development. Journal of Hepatology, 2014, 61, 1088-1096.	3.7	191
58	Resistance to targeted therapies: a role for microRNAs?. Trends in Molecular Medicine, 2013, 19, 633-642.	6.7	31
59	Targeting MET: why, where and how?. Current Opinion in Pharmacology, 2013, 13, 511-518.	3.5	41
60	MicroRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?. Hepatology, 2013, 57, 840-847.	7.3	320
61	Amplification of the <i>MET</i> Receptor Drives Resistance to Anti-EGFR Therapies in Colorectal Cancer. Cancer Discovery, 2013, 3, 658-673.	9.4	585
62	Cell-Autonomous and Non–Cell-Autonomous Mechanisms of HGF/MET–Driven Resistance to Targeted Therapies: From Basic Research to a Clinical Perspective. Cancer Discovery, 2013, 3, 978-992.	9.4	84
63	Human ASH-1 Promotes Neuroendocrine Differentiation in Androgen Deprivation Conditions and Interferes With Androgen Responsiveness in Prostate Cancer Cells. Prostate, 2013, 73, 1241-1249.	2.3	26
64	Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene, 2012, 31, 4517-4526.	5.9	69
65	MiR-1 Downregulation Cooperates with MACC1 in Promoting <i>MET</i> Overexpression in Human Colon Cancer. Clinical Cancer Research, 2012, 18, 737-747.	7.0	116
66	Sheddingâ€Generated Met Receptor Fragments can be Routed to Either the Proteasomal or the Lysosomal Degradation Pathway. Traffic, 2012, 13, 1261-1272.	2.7	36
67	Expression of c-jun is not mandatory for mouse hepatocyte proliferation induced by two nuclear receptor ligands: TCPOBOP and T3. Journal of Hepatology, 2011, 55, 1069-1078.	3.7	8
68	Enhanced c-Met activity promotes G-CSF–induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 2011, 117, 419-428.	1.4	114
69	HIF- $1\hat{l}\pm$ stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radical Biology and Medicine, 2011, 51, 893-904.	2.9	146
70	HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Breast Cancer Research and Treatment, 2011, 130, 29-40.	2.5	47
71	Yesâ€associated protein regulation of adaptive liver enlargement and hepatocellular carcinoma development in mice. Hepatology, 2011, 53, 2086-2096.	7.3	71
72	Tyrosine Kinases as Molecular Targets to Inhibit Cancer Progression and Metastasis. Current Pharmaceutical Design, 2010, 16, 1396-1409.	1.9	11

#	Article	IF	CITATIONS
73	Tumorigenic and Metastatic Activity of Human Thyroid Cancer Stem Cells. Cancer Research, 2010, 70, 8874-8885.	0.9	197
74	<i>MET</i> and <i>KRAS</i> Gene Amplification Mediates Acquired Resistance to MET Tyrosine Kinase Inhibitors. Cancer Research, 2010, 70, 7580-7590.	0.9	164
75	Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Molecular Cancer, 2010, 9, 121.	19.2	95
76	Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Molecular Cancer, 2010, 9, 75.	19.2	197
77	MiRNAs as new master players. Cell Cycle, 2009, 8, 2185-2186.	2.6	11
78	Only a Subset of Met-Activated Pathways Are Required to Sustain Oncogene Addiction. Science Signaling, 2009, 2, ra80.	3.6	84
79	Down-Regulation of the Met Receptor Tyrosine Kinase by Presenilin-dependent Regulated Intramembrane Proteolysis. Molecular Biology of the Cell, 2009, 20, 2495-2507.	2.1	92
80	A Correction to the Research Article Titled: "Only a Subset of Met-Activated Pathways Are Required to Sustain Oncogene Addiction" by A. Bertotti, M. F. Burbridge, S. Gastaldi, F. Galimi, D. Torti, E. Medico, S. Giordano, S. Corso, G. Rolland-Valognes, B. P. Lockhart, J. A. Hickman, P. M. Comoglio, L. Trusolino. Science Signaling, 2009, 2, er11.	3.6	23
81	Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene, 2008, 27, 684-693.	5. 9	126
82	Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nature Reviews Drug Discovery, 2008, 7, 504-516.	46.4	737
83	From Single- to Multi-Target Drugs in Cancer Therapy: When Aspecificity Becomes an Advantage. Current Medicinal Chemistry, 2008, 15, 422-432.	2.4	393
84	Molecular cancer therapy: Can our expectation be MET?. European Journal of Cancer, 2008, 44, 641-651.	2.8	113
85	Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. Journal of Experimental Medicine, 2008, 205, 1673-1685.	8.5	233
86	Semaphorin 4D regulates gonadotropin hormone–releasing hormone-1 neuronal migration through PlexinB1–Met complex. Journal of Cell Biology, 2008, 183, 555-566.	5. 2	92
87	MicroRNAs Impair MET-Mediated Invasive Growth. Cancer Research, 2008, 68, 10128-10136.	0.9	168
88	Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene, 2007, 26, 6968-6978.	5.9	131
89	Semaphorin pathways orchestrate osteogenesis. Nature Cell Biology, 2006, 8, 545-547.	10.3	20
90	Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 2006, 25, 3689-3698.	5.9	125

#	Article	IF	Citations
91	Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5090-5095.	7.1	147
92	MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Research, 2006, 66, 4750-4757.	0.9	123
93	Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood, 2005, 105, 4321-4329.	1.4	226
94	HGF/MET signalling protects Plasmodium-infected host cells from apoptosis. Cellular Microbiology, 2005, 7, 603-609.	2.1	100
95	TGFα expression impairs Trastuzumab-induced HER2 downregulation. Oncogene, 2005, 24, 3002-3010.	5.9	113
96	Cell Motility Is Controlled by SF2/ASF through Alternative Splicing of the Ron Protooncogene. Molecular Cell, 2005, 20, 881-890.	9.7	339
97	Cancer therapy: can the challenge be MET?. Trends in Molecular Medicine, 2005, 11, 284-292.	6.7	218
98	Reactive Oxygen Species Mediate Met Receptor Transactivation by G Protein-coupled Receptors and the Epidermal Growth Factor Receptor in Human Carcinoma Cells. Journal of Biological Chemistry, 2004, 279, 28970-28978.	3.4	108
99	Invasive growth: A two-way street for semaphorin signalling. Nature Cell Biology, 2004, 6, 1155-1157.	10.3	18
100	Plexinâ€B3 is a functional receptor for semaphorin 5A. EMBO Reports, 2004, 5, 710-714.	4.5	132
101	Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene, 2004, 23, 5131-5137.	5.9	164
102	Targeting Plasmodium host cells: survival within hepatocytes. Trends in Molecular Medicine, 2004, 10, 487-492.	6.7	4
103	Negative receptor signalling. Current Opinion in Cell Biology, 2003, 15, 128-135.	5.4	316
104	Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 2003, 3, 347-361.	16.8	1,244
105	ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells. British Journal of Cancer, 2003, 88, 396-400.	6.4	19
106	Hepatocyte growth factor and its receptor are required for malaria infection. Nature Medicine, 2003, 9, 1363-1369.	30.7	133
107	CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood, 2003, 101, 1962-1969.	1.4	139
108	The endophilin–CIN85–Cbl complex mediates ligand-dependent downregulation of c-Met. Nature, 2002, 416, 187-190.	27.8	424

#	Article	IF	Citations
109	The Semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biology, 2002, 4, 720-724.	10.3	391
110	MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. Journal of Cellular Physiology, 2001, 189, 285-290.	4.1	46
111	Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling. Oncogene, 2001, 20, 156-166.	5.9	41
112	Differential requirement of the last C-terminal tail of Met receptor for cell transformation and invasiveness. Oncogene, 2001, 20, 5493-5502.	5.9	6
113	Hepatocyte Growth Factor Is a Regulator of Monocyte-Macrophage Function. Journal of Immunology, 2001, 166, 1241-1247.	0.8	129
114	Expression of functional tyrosine kinases on immortalized Kaposi's sarcoma cells. Journal of Cellular Physiology, 2000, 184, 246-254.	4.1	16
115	Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene, 2000, 19, 1547-1555.	5.9	314
116	Sustained recruitment of phospholipase $\text{C-}\hat{l}^3$ to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene, 2000, 19, 1509-1518.	5.9	154
117	Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. Oncogene, 1999, 18, 1139-1146.	5.9	77
118	Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene, 1999, 18, 5221-5231.	5.9	139
119	C-met activation is necessary but not sufficient for liver colonization by B16 murine melanoma cells. Clinical and Experimental Metastasis, 1998, 16, 253-265.	3.3	18
120	Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14379-14383.	7.1	96
121	A Natural Hepatocyte Growth Factor/Scatter Factor Autocrine Loop in Myoblast Cells and the Effect of the Constitutive Met Kinase Activation on Myogenic Differentiation. Journal of Cell Biology, 1997, 137, 1057-1068.	5.2	165
122	A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13868-13872.	7.1	90
123	Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes. EMBO Journal, 1997, 16, 495-503.	7.8	156
124	Control of invasive growth by the HGF receptor family. Journal of Cellular Physiology, 1997, 173, 183-186.	4.1	35
125	Specific Uncoupling of GRB2 from the Met Receptor. Journal of Biological Chemistry, 1996, 271, 14119-14123.	3.4	141
126	A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell, 1994, 77, 261-271.	28.9	980

#	Article	IF	CITATIONS
127	Transfer of motogenic and invasive response to scatter factor/hepatocyte growth factor by transfection of human MET protooncogene Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 649-653.	7.1	152
128	Karyotypic analysis of gastric carcinoma cell lines carrying an amplified c-met oncogene. Cancer Genetics and Cytogenetics, 1992, 64, 170-173.	1.0	68
129	Defective posttranslational processing activates the tyrosine kinase encoded by the MET proto-oncogene (hepatocyte growth factor receptor) Molecular and Cellular Biology, 1991, 11, 6084-6092.	2.3	63
130	C-terminal truncated forms of Met, the hepatocyte growth factor receptor Molecular and Cellular Biology, 1991, 11, 5954-5962.	2.3	165
131	Tyrosine kinase receptor indistinguishable from the c-met protein. Nature, 1989, 339, 155-156.	27.8	465
132	Evidence for autocrine activation of a tyrosine kinase in a human gastric carcinoma cell line. Journal of Cellular Biochemistry, 1988, 38, 229-236.	2.6	15
133	p145, a protein with associated tyrosine kinase activity in a human gastric carcinoma cell line Molecular and Cellular Biology, 1988, 8, 3510-3517.	2.3	78
134	Detection of Deregulated Tyrosine-Kinases in Experimental and Human Metastatic Tumors. Advances in Experimental Medicine and Biology, 1988, 233, 303-308.	1.6	0
135	Proteins phosphorylated on tyrosine as markers of human tumor cell lines. International Journal of Cancer, 1987, 39, 482-487.	5.1	18
136	Immunological detection of proteins phosphorylated at tyrosine in cells stimulated by growth factors or transformed by retroviral-oncogene-coded tyrosine kinases. FEBS Journal, 1986, 158, 383-391.	0.2	36