Yoshiki Horikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7278285/publications.pdf

Version: 2024-02-01

623734 610901 34 586 14 24 citations g-index h-index papers 35 35 35 712 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Applied Biochemistry and Biotechnology, 2019, 188, 1066-1076.	2.9	100
2	Visualization of cellulase interactions with cellulose microfibril by transmission electron microscopy. Cellulose, 2017, 24, 1-9.	4.9	80
3	Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. Cellulose, 2008, 15, 419-424.	4.9	46
4	Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons. Journal of Wood Science, 2015, 61, 251-261.	1.9	31
5	Preferential Uniplanar Orientation of Cellulose Microfibrils Reinvestigated by the FTIR Technique. Cellulose, 2006, 13, 309-316.	4.9	30
6	The structural changes in crystalline cellulose and effects on enzymatic digestibility. Polymer Degradation and Stability, 2013, 98, 2351-2356.	5.8	29
7	Near-Infrared Chemometric Approach to Exhaustive Analysis of Rice Straw Pretreated for Bioethanol Conversion. Applied Biochemistry and Biotechnology, 2011, 164, 194-203.	2.9	21
8	Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. International Journal of Biological Macromolecules, 2018, 109, 569-575.	7.5	21
9	Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: Formation mechanism of disordered regions along each cellulose microfibril. International Journal of Biological Macromolecules, 2018, 109, 914-920.	7.5	21
10	The crystalline phase of cellulose changes under developmental control in a marine chordate. Cellular and Molecular Life Sciences, 2011, 68, 1623-1631.	5.4	19
11	Transport Properties of Commercial Cellulose Nanocrystals in Aqueous Suspension Prepared from Chemical Pulp via Sulfuric Acid Hydrolysis. ACS Omega, 2018, 3, 13944-13951.	3.5	17
12	Cellulose lβ investigated by IR-spectroscopy at low temperatures. Cellulose, 2014, 21, 3171-3179.	4.9	16
13	Assessment of cellulose structural variety from different origins using near infrared spectroscopy. Cellulose, 2017, 24, 5313-5325.	4.9	16
14	Chemometric Analysis with Near-Infrared Spectroscopy for Chemically Pretreated Erianthus toward Efficient Bioethanol Production. Applied Biochemistry and Biotechnology, 2012, 166, 711-721.	2.9	15
15	Reconsideration of the conformation of methyl cellulose and hydroxypropyl methyl cellulose ethers in aqueous solution. RSC Advances, 2020, 10, 19059-19066.	3.6	15
16	Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose. Cellulose, 2020, 27, 9767-9777.	4.9	14
17	Cellulose Nanocrystals as a Model Substance for Rigid Rod Particle Suspension Rheology. Macromolecules, 2020, 53, 2677-2685.	4.8	14
18	Development of colorless wood via two-step delignification involving alcoholysis and bleaching with maintaining natural hierarchical structure. Journal of Wood Science, 2020, 66, .	1.9	14

#	Article	IF	CITATIONS
19	Assessment of endoglucanase activity by analyzing the degree of cellulose polymerization and high-throughput analysis by near-infrared spectroscopy. Cellulose, 2016, 23, 1565-1572.	4.9	8
20	Linear and branched structures present in high-molar-mass fractions in holocelluloses prepared from chara, haircap moss, adiantum, ginkgo, Japanese cedar, and eucalyptus. Cellulose, 2021, 28, 3935-3949.	4.9	8
21	Improving the macroscopic uniformity of nanopaper by multiâ€step coating of cellulose nanofibre dispersion. Micro and Nano Letters, 2017, 12, 516-519.	1.3	7
22	Effects of orientation and degree of polymerization on tensile properties in the cellulose sheets using hierarchical structure of wood. Cellulose, 2022, 29, 2885-2898.	4.9	7
23	Creation and structural evaluation of the three-dimensional cellulosic material "White-Colored Bamboo― Holzforschung, 2021, 75, 180-186.	1.9	7
24	Artificially lignified cell wall catalyzed by peroxidase selectively localized on a network of microfibrils from cultured cells. Planta, 2020, 251, 104.	3.2	6
25	Line monitoring by near-infrared chemometric technique for potential ethanol production from hydrothermally treated Eucalyptus globulus. Biochemical Engineering Journal, 2015, 97, 65-72.	3.6	5
26	Crystal Orientation of Poly(l-Lactic Acid) Induced by Magnetic Alignment of a Nucleating Agent. Polymers, 2018, 10, 653.	4.5	5
27	Structural changes in sugarcane bagasse cellulose caused by enzymatic hydrolysis. Journal of Wood Science, 2020, 66, .	1.9	5
28	Polymerization and Characterization of a Bio-Based Vinyl Polymer Based on 5-Hydroxymethylfurfural Including a Benzoyl Group as a Side Chain. Journal of Fiber Science and Technology, 2017, 73, 270-275.	0.4	4
29	A combination of scanning electron microscopy and broad argon ion beam milling provides intact structure of secondary tissues in woody plants. Scientific Reports, 2022, 12, .	3.3	3
30	Viscoelastic Behavior of Cellulose Nano-Fiber Suspension Possessing Effectively Controlled Inter-Particle Interactions. Nihon Reoroji Gakkaishi, 2021, 49, 179-187.	1.0	2
31	X-ray diffraction and Fourier transform infrared spectroscopic analyses of wood blocks decayed by wood rotting fungi classified into Polyporales. MOKUZAI HOZON (Wood Protection), 2019, 45, 268-279.	0.0	0
32	Development of "Colorless Wood Block―and Its Natural Hierarchical Structure. Kami Pa Gikyoshi/Japan Tappi Journal, 2020, 74, 1071-1075.	0.1	0
33	Morphology and color change of pulp fiber sheet in seawater and soil. BioResources, 2021, 16, 6943-6953.	1.0	0

lron-reducing capacity of wood decayed by wood rotting basidiomycetes. MOKUZAI HOZON (Wood) Tj ETQq0 0 0 ggBT /Overlock 10 Tf