Howard L Weiner

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7278247/howard-l-weiner-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 17,225 129 215 h-index g-index citations papers 6.91 20,908 10.1 230 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
215	Temporal trends of multiple sclerosis disease activity: Electronic health records indicators <i>Multiple Sclerosis and Related Disorders</i> , 2022 , 57, 103333	4	O
214	Targeting Epstein-Barr virus to treat MS Med, 2022, 3, 159-161	31.7	
213	How does Epstein-Barr virus trigger MS?. <i>Immunity</i> , 2022 , 55, 390-392	32.3	2
212	The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis <i>Microbiome</i> , 2022 , 10, 47	16.6	О
211	Oral tolerance: an updated review <i>Immunology Letters</i> , 2022 , 245, 29-37	4.1	2
210	Challenges to Longitudinal Characterization of Lower Urinary Tract Dysfunction in Multiple Sclerosis <i>Multiple Sclerosis and Related Disorders</i> , 2022 , 62, 103793	4	0
209	Proximal and distal effects of genetic susceptibility to multiple sclerosis on the T cell epigenome. <i>Nature Communications</i> , 2021 , 12, 7078	17.4	3
208	Widespread Glial Activation in Primary Progressive Multiple Sclerosis Revealed by 18F-PBR06 PET: A Clinically Feasible, Individualized Approach. <i>Clinical Nuclear Medicine</i> , 2021 , 46, 136-137	1.7	1
207	Comparison of Dimethyl Fumarate vs Fingolimod and Rituximab vs Natalizumab for Treatment of Multiple Sclerosis. <i>JAMA Network Open</i> , 2021 , 4, e2134627	10.4	3
206	Patient-reported outcomes associated with transition to secondary progressive multiple sclerosis. <i>Quality of Life Research</i> , 2021 , 1	3.7	О
205	Myeloid cell subsets that express latency-associated peptide promote cancer growth by modulating Ticells. <i>IScience</i> , 2021 , 24, 103347	6.1	O
204	Gut Microbiome in Progressive Multiple Sclerosis. <i>Annals of Neurology</i> , 2021 , 89, 1195-1211	9.4	27
203	Confirmed disability progression provides limited predictive information regarding future disease progression in multiple sclerosis. <i>Multiple Sclerosis Journal - Experimental, Translational and Clinical</i> , 2021 , 7, 2055217321999070	2	O
202	Regulation of splenic monocyte homeostasis and function by gut microbial products. <i>IScience</i> , 2021 , 24, 102356	6.1	0
201	Relapse recovery in multiple sclerosis: Effect of treatment and contribution to long-term disability. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 20552173211015503	2	1
200	The impact of ocrelizumab on health-related quality of life in individuals with multiple sclerosis. <i>Multiple Sclerosis Journal - Experimental, Translational and Clinical</i> , 2021 , 7, 20552173211007523	2	
199	Validation of Two Kinetic Assays for the Quantification of Endotoxin in Human Serum. <i>Frontiers in Neurology</i> , 2021 , 12, 691683	4.1	1

198	Obesity is associated with the Optic Neuritis severity in Male patients with Multiple Sclerosis. <i>Multiple Sclerosis and Related Disorders</i> , 2021 , 51, 102910	4		
197	Trajectories of Symbol Digit Modalities Test performance in individuals with multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2021 , 27, 593-602	5	4	
196	MRI Lesion State Modulates the Relationship Between Serum Neurofilament Light and Age in Multiple Sclerosis. <i>Journal of Neuroimaging</i> , 2021 , 31, 388-393	2.8	3	
195	PD-L1 and XCR1 dendritic cells are region-specific regulators of gut homeostasis. <i>Nature Communications</i> , 2021 , 12, 4907	17.4	5	
194	Nasal Administration of Anti-CD3 Monoclonal Antibody (Foralumab) Reduces Lung Inflammation and Blood Inflammatory Biomarkers in Mild to Moderate COVID-19 Patients: A Pilot Study. <i>Frontiers in Immunology</i> , 2021 , 12, 709861	8.4	1	
193	Review of Phase III Clinical Trials Outcomes in Patients with Secondary Progressive Multiple Sclerosis. <i>Multiple Sclerosis and Related Disorders</i> , 2021 , 54, 103086	4	1	
192	Serum neurofilament levels and patient-reported outcomes in multiple sclerosis. <i>Annals of Clinical and Translational Neurology</i> , 2021 , 8, 631-638	5.3	3	
191	Blood neurofilament light: a critical review of its application to neurologic disease. <i>Annals of Clinical and Translational Neurology</i> , 2020 , 7, 2508-2523	5.3	39	
190	Temporal association of sNfL and gad-enhancing lesions in multiple sclerosis. <i>Annals of Clinical and Translational Neurology</i> , 2020 , 7, 945-955	5.3	15	
189	COVID-19 in teriflunomide-treated patients with multiple sclerosis. <i>Journal of Neurology</i> , 2020 , 267, 27	79 9.3 79	9637	
188	Serum antibodies to phosphatidylcholine in MS. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2020 , 7,	9.1	3	
187	Brain MRI Predicts Worsening Multiple Sclerosis Disability over 5 Years in the SUMMIT Study. <i>Journal of Neuroimaging</i> , 2020 , 30, 212-218	2.8	4	
186	Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. <i>Molecular Neurobiology</i> , 2020 , 57, 2702-2726	6.2	7	
185	Comparison of health-related quality of life across treatment groups in individuals with multiple sclerosis. <i>Multiple Sclerosis and Related Disorders</i> , 2020 , 40, 101944	4	2	
184	The microbiome requires a genetically susceptible host to induce central nervous system autoimmunity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 27764-27766	11.5	1	
183	7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. <i>Multiple Sclerosis Journal</i> , 2020 , 26, 177-187	5	28	
182	An argument for broad use of high efficacy treatments in early multiple sclerosis. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2020 , 7,	9.1	26	
181	Social support in multiple sclerosis: Associations with quality of life, depression, and anxiety. Journal of Psychosomatic Research, 2020, 138, 110252	4.1	11	

180	Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study. <i>Npj Digital Medicine</i> , 2020 , 3, 135	15.7	6
179	A One-Two Punch in the Gut May Trigger Multiple Sclerosis. <i>Immunity</i> , 2020 , 53, 707-709	32.3	1
178	Aberrant expression of USF2 in refractory rheumatoid arthritis and its regulation of proinflammatory cytokines in Th17 cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 30639-30648	11.5	11
177	Regional microglial activation in the substantia nigra is linked with fatigue in MS. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2020 , 7,	9.1	3
176	Improved relapse recovery in paediatric compared to adult multiple sclerosis. <i>Brain</i> , 2020 , 143, 2733-27	4111.2	20
175	Phenome-wide examination of comorbidity burden and multiple sclerosis disease severity. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2020 , 7,	9.1	9
174	A pharmacogenetic study implicates in the response to Interferon-In multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2020 , 26, 1074-1082	5	1
173	Microstructural fronto-striatal and temporo-insular alterations are associated with fatigue in patients with multiple sclerosis independent of white matter lesion load and depression. <i>Multiple Sclerosis Journal</i> , 2020 , 26, 1708-1718	5	15
172	The sex-specific interaction of the microbiome in neurodegenerative diseases. <i>Brain Research</i> , 2019 , 1724, 146385	3.7	11
171	Visualizing Lymph Node Structure and Cellular Localization using Ex-Vivo Confocal Microscopy. Journal of Visualized Experiments, 2019,	1.6	3
170	Latent-period stool proteomic assay of multiple sclerosis model indicates protective capacity of host-expressed protease inhibitors. <i>Scientific Reports</i> , 2019 , 9, 12460	4.9	4
169	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. <i>Science</i> , 2019 , 365,	33.3	309
168	The impact of cervical spinal cord atrophy on quality of life in multiple sclerosis. <i>Journal of the Neurological Sciences</i> , 2019 , 403, 38-43	3.2	10
167	Immunologic Alterations Associated With Oral Delivery of Anti-CD3 (OKT3) Monoclonal Antibodies in Patients With Moderate-to-Severe Ulcerative Colitis. <i>Crohng & Colitis 360</i> , 2019 , 1, otz009	1.4	6
166	Mucosal tolerance therapy in humans: Past and future. <i>Clinical and Experimental Neuroimmunology</i> , 2019 , 10, 20-31	0.4	3
165	MRI phenotypes in MS: Longitudinal changes and miRNA signatures. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2019 , 6, e530	9.1	11
164	Cross-sectional study of smoking exposure: no differential effect on OCT metrics in a cohort of MS patients. <i>Multiple Sclerosis Journal - Experimental, Translational and Clinical</i> , 2019 , 5, 2055217319828400	0 ²	4
163	Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. <i>Nature Neuroscience</i> , 2019 , 22, 729-740	25.5	166

(2018-2019)

162	Time between expanded disability status scale (EDSS) scores. <i>Multiple Sclerosis and Related Disorders</i> , 2019 , 30, 98-103	4	7
161	Discontinuation of disease-modifying therapy for patients with relapsing-remitting multiple sclerosis: Effect on clinical and MRI outcomes. <i>Multiple Sclerosis and Related Disorders</i> , 2019 , 35, 119-12	7 ⁴	13
160	Gray matter microglial activation in relapsing vs progressive MS: A [F-18]PBR06-PET study. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2019 , 6, e587	9.1	15
159	History of fatigue in multiple sclerosis is associated with grey matter atrophy. <i>Scientific Reports</i> , 2019 , 9, 14781	4.9	13
158	T Cell-Secreted XCL1 Mediates Anti-CD3-Induced Oral Tolerance. <i>Journal of Immunology</i> , 2019 , 203, 2621-2629	5.3	10
157	Calorie restriction slows age-related microbiota changes in an Alzheimer's disease model in female mice. <i>Scientific Reports</i> , 2019 , 9, 17904	4.9	47
156	Oral Administration of miR-30d from Feces of MS Patients Suppresses MS-like Symptoms in Mice by Expanding Akkermansia muciniphila. <i>Cell Host and Microbe</i> , 2019 , 26, 779-794.e8	23.4	56
155	Quantifying neurologic disease using biosensor measurements in-clinic and in free-living settings in multiple sclerosis. <i>Npj Digital Medicine</i> , 2019 , 2, 123	15.7	21
154	Assessment of computer adaptive testing version of the Neuro-QOL for people with multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2019 , 25, 1791-1799	5	1
153	Infection risk with alemtuzumab decreases over time: pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study. <i>Multiple Sclerosis Journal</i> , 2019 , 25, 1605-1617	5	46
152	Monomethyl fumarate treatment impairs maturation of human myeloid dendritic cells and their ability to activate T cells. <i>Multiple Sclerosis Journal</i> , 2019 , 25, 63-71	5	13
151	Correlating serum micrornas and clinical parameters in amyotrophic lateral sclerosis. <i>Muscle and Nerve</i> , 2018 , 58, 261-269	3.4	52
150	Multiple Sclerosis: Mechanisms and Immunotherapy. <i>Neuron</i> , 2018 , 97, 742-768	13.9	348
149	A probiotic modulates the microbiome and immunity in multiple sclerosis. <i>Annals of Neurology</i> , 2018 , 83, 1147-1161	9.4	97
148	Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples. <i>Scientific Reports</i> , 2018 , 8, 6351	4.9	46
147	Microbiota Signaling Pathways that Influence Neurologic Disease. <i>Neurotherapeutics</i> , 2018 , 15, 135-145	6.4	67
146	Investigation of probiotics in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 58-63	5	58
145	SUMMIT (Serially Unified Multicenter Multiple Sclerosis Investigation): creating a repository of deeply phenotyped contemporary multiple sclerosis cohorts. <i>Multiple Sclerosis Journal</i> , 2018 , 24, 1485-	1498	14

144	Brain and spinal cord MRI lesions in primary progressive vs. relapsing-remitting multiple sclerosis. <i>ENeurologicalSci</i> , 2018 , 12, 42-46	2.1	9
143	Identification of MS-specific serum miRNAs in an international multicenter study. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2018 , 5, e491	9.1	34
142	T cells control humoral immune response by inducing T follicular helper cell differentiation. <i>Nature Communications</i> , 2018 , 9, 3151	17.4	25
141	Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6264-E6273	11.5	60
140	Cellular Components and Mechanisms of Oral Tolerance Induction. <i>Critical Reviews in Immunology</i> , 2018 , 38, 207-231	1.8	5
139	Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathology, 2018 , 28, 791-805	6	58
138	Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI. Journal of Neuroimaging, 2018 , 28, 36-47	2.8	27
137	Acute microglia ablation induces neurodegeneration in the somatosensory system. <i>Nature Communications</i> , 2018 , 9, 4578	17.4	31
136	Neurofilament light chain serum levels correlate with 10-year MRI outcomes in multiple sclerosis. <i>Annals of Clinical and Translational Neurology</i> , 2018 , 5, 1478-1491	5.3	69
135	Long-term follow-up for multiple sclerosis patients initially treated with interferon-beta and glatiramer acetate. <i>Journal of the Neurological Sciences</i> , 2018 , 394, 127-131	3.2	7
134	Microglial signatures and their role in health and disease. <i>Nature Reviews Neuroscience</i> , 2018 , 19, 622-6	35 3.5	287
133	An immunoregulatory and tissue-residency program modulated by c-MAF in human T17 cells. <i>Nature Immunology</i> , 2018 , 19, 1126-1136	19.1	52
132	A longitudinal uncontrolled study of cerebral gray matter volume in patients receiving natalizumab for multiple sclerosis. <i>International Journal of Neuroscience</i> , 2017 , 127, 396-403	2	8
131	Association Between Serum MicroRNAs and Magnetic Resonance Imaging Measures of Multiple Sclerosis Severity. <i>JAMA Neurology</i> , 2017 , 74, 275-285	17.2	37
130	Sample size requirements for one-year treatment effects using deep gray matter volume from 3T		10
	MRI in progressive forms of multiple sclerosis. <i>International Journal of Neuroscience</i> , 2017 , 127, 971-980	02	
129	MRI in progressive forms of multiple sclerosis. <i>International Journal of Neuroscience</i> , 2017 , 127, 971-980. Characterizing Clinical and MRI Dissociation in Patients with Multiple Sclerosis. <i>Journal of Neuroimaging</i> , 2017 , 27, 481-485	2.8	23
129	MRI in progressive forms of multiple sclerosis. <i>International Journal of Neuroscience</i> , 2017 , 127, 971-980. Characterizing Clinical and MRI Dissociation in Patients with Multiple Sclerosis. <i>Journal of</i>		

(2016-2017)

126	Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. <i>Brain</i> , 2017 , 140, 1900-1913	11.2	296
125	IL-6 Inhibits Upregulation of Membrane-Bound TGF-II on CD4+ T Cells and Blocking IL-6 Enhances Oral Tolerance. <i>Journal of Immunology</i> , 2017 , 198, 1202-1209	5.3	12
124	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. <i>Immunity</i> , 2017 , 47, 566-581.e9	32.3	988
123	Disruption of the ATP/adenosine balance in CD39 mice is associated with handling-induced seizures. <i>Immunology</i> , 2017 , 152, 589-601	7.8	17
122	Oral treatment with foralumab, a fully human anti-CD3 monoclonal antibody, prevents skin xenograft rejection in humanized mice. <i>Clinical Immunology</i> , 2017 , 183, 240-246	9	10
121	History and mechanisms of oral tolerance. Seminars in Immunology, 2017, 30, 3-11	10.7	39
120	A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. <i>Journal of the Neurological Sciences</i> , 2017 , 383, 221-229	3.2	13
119	Transcriptional signature of human pro-inflammatory T17 cells identifies reduced IL10 gene expression in multiple sclerosis. <i>Nature Communications</i> , 2017 , 8, 1600	17.4	62
118	Treatment satisfaction across injectable, infusion, and oral disease-modifying therapies for multiple sclerosis. <i>Multiple Sclerosis and Related Disorders</i> , 2017 , 18, 196-201	4	12
117	Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2017 , 4, e359	9.1	24
116	The effect of alcohol and red wine consumption on clinical and MRI outcomes in multiple sclerosis. <i>Multiple Sclerosis and Related Disorders</i> , 2017 , 17, 47-53	4	12
115	Mucosal administration of CD3-specific monoclonal antibody inhibits diabetes in NOD mice and in a preclinical mouse model transgenic for the CD3 epsilon chain. <i>Journal of Autoimmunity</i> , 2017 , 76, 115-1	2 2 5.5	11
114	The emergence of neuroepidemiology, neurovirology and neuroimmunology: the legacies of John F. Kurtzke and Richard 'Dick' T. Johnson. <i>Journal of Neurology</i> , 2017 , 264, 817-828	5.5	1
113	Exploration of machine learning techniques in predicting multiple sclerosis disease course. <i>PLoS ONE</i> , 2017 , 12, e0174866	3.7	71
112	IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. <i>Brain</i> , 2016 , 139, 1939-57	11.2	62
111	Alterations of the human gut microbiome in multiple sclerosis. <i>Nature Communications</i> , 2016 , 7, 12015	17.4	632
110	AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice. <i>Cell Reports</i> , 2016 , 17, 1318-1329	10.6	97
109	Power estimation for non-standardized multisite studies. <i>NeuroImage</i> , 2016 , 134, 281-294	7.9	28

108	Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. <i>Immunotherapy</i> , 2016 , 8, 889-906	3.8	92
107	Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. <i>Lancet, The</i> , 2016 , 387, 1075-1084	40	271
106	The Effect of Fingolimod on Conversion of Acute Gadolinium-Enhancing Lesions to Chronic T1 Hypointensities in Multiple Sclerosis. <i>Journal of Neuroimaging</i> , 2016 , 26, 184-7	2.8	11
105	Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosis. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2016 , 3, e200	9.1	24
104	Immunology. How does the immune system tolerate food?. Science, 2016, 351, 810-1	33.3	11
103	The Host Shapes the Gut Microbiota via Fecal MicroRNA. <i>Cell Host and Microbe</i> , 2016 , 19, 32-43	23.4	394
102	Control of the gut microbiome by fecal microRNA. <i>Microbial Cell</i> , 2016 , 3, 176-177	3.9	32
101	Genes and Environment in Multiple Sclerosis project: A platform to investigate multiple sclerosis risk. <i>Annals of Neurology</i> , 2016 , 79, 178-89	9.4	30
100	Inducing tolerance one antigen at a time. <i>Nature Biotechnology</i> , 2016 , 34, 515-7	44.5	1
99	Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2016 , 3, e267	9.1	50
98	Using multiple imputation to efficiently correct cerebral MRI whole brain lesion and atrophy data in patients with multiple sclerosis. <i>NeuroImage</i> , 2015 , 119, 81-8	7.9	6
97	A pharmacogenetic study implicates SLC9a9 in multiple sclerosis disease activity. <i>Annals of Neurology</i> , 2015 , 78, 115-27	9.4	33
96	Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. <i>JAMA Neurology</i> , 2015 , 72, 152-8	17.2	260
95	Platelets Play Differential Role During the Initiation and Progression of Autoimmune Neuroinflammation. <i>Circulation Research</i> , 2015 , 117, 779-92	15.7	49
94	Brain MRI lesions and atrophy are associated with employment status in patients with multiple sclerosis. <i>Journal of Neurology</i> , 2015 , 262, 2425-32	5.5	19
93	ISDN2014_0027: REMOVED: Identification of a unique molecular and functional microglia signature in health and disease. <i>International Journal of Developmental Neuroscience</i> , 2015 , 47, 5-5	2.7	1
92	ISDN2014_0028: REMOVED: Targeting miR-155 restores dysfunctional microglia and ameliorates disease in the SOD1 model of ALS. <i>International Journal of Developmental Neuroscience</i> , 2015 , 47, 5-5	2.7	1
91	Handling changes in MRI acquisition parameters in modeling whole brain lesion volume and atrophy data in multiple sclerosis subjects: Comparison of linear mixed-effect models. <i>NeuroImage: Clinical</i> , 2015 , 8, 606-10	5.3	19

(2012-2015)

90	In vivo anti-LAP mAb enhances IL-17/IFN-lresponses and abrogates anti-CD3-induced oral tolerance. <i>International Immunology</i> , 2015 , 27, 73-82	4.9	14	
89	Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. <i>Journal of Extracellular Vesicles</i> , 2015 , 4, 26533	16.4	45	
88	Extracellular RNAs: development as biomarkers of human disease. <i>Journal of Extracellular Vesicles</i> , 2015 , 4, 27495	16.4	54	
87	Identification of a novel mechanism of action of fingolimod (FTY720) on human effector T cell function through TCF-1 upregulation. <i>Journal of Neuroinflammation</i> , 2015 , 12, 245	10.1	23	
86	Pathogenic Transdifferentiation of Th17 Cells Contribute to Perpetuation of Rheumatoid Arthritis during Anti-TNF Treatment. <i>Molecular Medicine</i> , 2015 , 21, 536-43	6.2	20	
85	Effect of vitamin D on MS activity by disease-modifying therapy class. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2015 , 2, e167	9.1	34	
84	Identification and characterization of latency-associated peptide-expressing IT cells. <i>Nature Communications</i> , 2015 , 6, 8726	17.4	23	
83	Evaluating more naturalistic outcome measures: A 1-year smartphone study in multiple sclerosis. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2015 , 2, e162	9.1	33	
82	Identification of a unique TGF-Edependent molecular and functional signature in microglia. <i>Nature Neuroscience</i> , 2014 , 17, 131-43	25.5	1532	
81	MRI phenotypes based on cerebral lesions and atrophy in patients with multiple sclerosis. <i>Journal of the Neurological Sciences</i> , 2014 , 346, 250-4	3.2	23	
80	An observational comparison of natalizumab vs. fingolimod using JCV serology to determine therapy. <i>Multiple Sclerosis Journal</i> , 2014 , 20, 1381-90	5	24	
79	Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. <i>Nature Medicine</i> , 2014 , 20, 1147-56	50.5	267	
78	Differential roles of microglia and monocytes in the inflamed central nervous system. <i>Journal of Experimental Medicine</i> , 2014 , 211, 1533-49	16.6	550	
77	Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. <i>PLoS ONE</i> , 2014 , 9, e103716	3.7	10	
76	Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. <i>Neurology</i> , 2014 , 83, 221	962•6	46	
75	Factors associated with recovery from acute optic neuritis in patients with multiple sclerosis. <i>Neurology</i> , 2014 , 82, 2173-9	6.5	39	
74	Treatment satisfaction in multiple sclerosis. International Journal of MS Care, 2014, 16, 68-75	2.3	26	

72 Disease Pathogenesis **2012**, 1-25

1

71	Pediatric Multiple Sclerosis and Acute Disseminated Encephalomyelitis 2012 , 101-135		
70	Magnetic Resonance Imaging in Multiple Sclerosis 2012 , 136-162		
69	Oral tolerance. <i>Immunological Reviews</i> , 2011 , 241, 241-59	11.3	428
68	Reply to D etecting oxysterols in the human circulation [INature Immunology, 2011 , 12, 577-578	19.1	1
67	Oral administration of OKT3 monoclonal antibody to human subjects induces a dose-dependent immunologic effect in T cells and dendritic cells. <i>Journal of Clinical Immunology</i> , 2010 , 30, 167-77	5.7	61
66	TGF-Induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction. <i>PLoS ONE</i> , 2010 , 5, e15523	3.7	53
65	Smoking and disease progression in multiple sclerosis. <i>Archives of Neurology</i> , 2009 , 66, 858-64		142
64	The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease?. <i>Annals of Neurology</i> , 2009 , 65, 239-48	9.4	276
63	Novel CD8+ Treg suppress EAE by TGF-beta- and IFN-gamma-dependent mechanisms. <i>European Journal of Immunology</i> , 2009 , 39, 3423-35	6.1	71
62	Predicting clinical progression in multiple sclerosis with the magnetic resonance disease severity scale. <i>Archives of Neurology</i> , 2008 , 65, 1449-53		48
61	Latency-associated peptide identifies a novel CD4+CD25+ regulatory T cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis. <i>Journal of Immunology</i> , 2008 , 180, 7327-37	5.3	117
60	A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. <i>Journal of Neurology</i> , 2008 , 255 Suppl 1, 3-11	5.5	157
59	Cutting Edge: Immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-beta-dependent manner. <i>Journal of Immunology</i> , 2007 , 178, 4017-21	5.3	74
58	A model for the comprehensive investigation of a chronic autoimmune disease: the multiple sclerosis CLIMB study. <i>Autoimmunity Reviews</i> , 2006 , 5, 532-6	13.6	110
57	Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25-LAP+ T cells. <i>Nature Medicine</i> , 2006 , 12, 627-35	50.5	208
56	Immunology and immunotherapy of Alzheimer's disease. <i>Nature Reviews Immunology</i> , 2006 , 6, 404-16	36.5	262
55	Oral tolerance. <i>Immunological Reviews</i> , 2005 , 206, 232-59	11.3	578

54	Magnetic Resonance Imaging Surrogates of Multiple Sclerosis Pathology and Their Relationship to Central Nervous System Atrophy. <i>Journal of Neuroimaging</i> , 2004 , 14, 46S-53S	2.8	11
53	Current issues in the treatment of human diseases by mucosal tolerance. <i>Annals of the New York Academy of Sciences</i> , 2004 , 1029, 211-24	6.5	48
52	Immunosuppressive treatment in multiple sclerosis. <i>Journal of the Neurological Sciences</i> , 2004 , 223, 1-1	13.2	25
51	Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. <i>Archives of Neurology</i> , 2004 , 61, 1613-5		190
50	CD4+CD25- T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. <i>Journal of Immunology</i> , 2003 , 170, 2516-22	5.3	194
49	Oral tolerance induced by continuous feeding: enhanced up-regulation of transforming growth factor-beta/interleukin-10 and suppression of experimental autoimmune encephalomyelitis. <i>Journal of Autoimmunity</i> , 2003 , 20, 135-45	15.5	107
48	Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. <i>European Journal of Immunology</i> , 2002 , 32, 1109-13	6.1	150
47	Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy. <i>Journal of Magnetic Resonance Imaging</i> , 2002 , 15, 203-9	5.6	105
46	Induction of colitis in mice deficient of Peyer's patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches. <i>American Journal of Pathology</i> , 2002 , 161, 2273-82	5.8	60
45	Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. <i>Immunological Reviews</i> , 2001 , 182, 207-14	11.3	686
44	B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. <i>Journal of Immunology</i> , 2001 , 166, 4456-64	5.3	82
43	Nasal administration of amyloid-peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease. <i>Annals of Neurology</i> , 2000 , 48, 567-579	9.4	295
42	Nasal administration of amyloid-[peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease 2000 , 48, 567		2
41	Genetic susceptibility or resistance to autoimmune encephalomyelitis in MHC congenic mice is associated with differential production of pro- and anti-inflammatory cytokines. <i>International Immunology</i> , 1999 , 11, 1573-80	4.9	55
40	QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. <i>Nature Genetics</i> , 1999 , 21, 158-60	36.3	116
39	Seasonal variation of interferon-gamma production in progressive multiple sclerosis. <i>Annals of Neurology</i> , 1998 , 44, 824-8	9.4	41
38	IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. <i>European Journal of Immunology</i> , 1998 , 28, 2780-90	6.1	199
37	Immune deviation following pulse cyclophosphamide/methylprednisolone treatment of multiple sclerosis: increased interleukin-4 production and associated eosinophilia. <i>Annals of Neurology</i> , 1997 , 42, 313-8	9.4	78

36	Oral tolerance: elucidation of mechanisms and application to treatment of autoimmune diseases. <i>Biopolymers</i> , 1997 , 43, 323-35	2.2	16
35	Three-year open protocol continuation study of oral tolerization with myelin antigens in multiple sclerosis and design of a phase III pivotal trial. <i>Annals of the New York Academy of Sciences</i> , 1996 , 778, 243-50	6.5	24
34	Immunologic mechanisms and therapy in multiple sclerosis. <i>Immunological Reviews</i> , 1995 , 144, 75-107	11.3	128
33	Peripheral deletion of antigen-reactive T cells in oral tolerance. <i>Nature</i> , 1995 , 376, 177-80	50.4	698
32	Suppression of antigen-induced arthritis in Lewis rats by oral administration of type II collagen. <i>Arthritis and Rheumatism</i> , 1995 , 38, 1092-6		64
31	Reciprocal expression of co-stimulatory molecules, B7-1 and B7-2, on murine T cells following activation. <i>European Journal of Immunology</i> , 1995 , 25, 207-11	6.1	69
30	Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals. <i>European Journal of Immunology</i> , 1994 , 24, 1026-32	6.1	102
29	Different kinetic patterns of cytokine gene expression in vivo in orally tolerant mice. <i>European Journal of Immunology</i> , 1994 , 24, 2720-4	6.1	44
28	Treatment of autoimmune diseases by oral tolerance to autoantigens. <i>Autoimmunity</i> , 1993 , 15 Suppl, 6-7	3	8
27	Common T-cell receptor V beta usage in oligoclonal T lymphocytes derived from cerebrospinal fluid and blood of patients with multiple sclerosis. <i>Annals of Neurology</i> , 1991 , 29, 33-40	9.4	61
26	Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin antigens: IV. Suppression of chronic relapsing disease in the Lewis rat and strain 13 guinea pig. <i>Annals of Neurology</i> , 1991 , 29, 615-22	9.4	70
25	T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. <i>Nature</i> , 1990 , 346, 183-7	50.4	787
24	Decrease of suppressor inducer (CD4+2H4+) T cells in multiple sclerosis cerebrospinal fluid. <i>Annals of Neurology</i> , 1989 , 25, 494-9	9.4	59
23	Loss of functional suppression is linked to decreases in circulating suppressor inducer (CD4+ 2H4+) T cells in multiple sclerosis. <i>Annals of Neurology</i> , 1988 , 24, 185-91	9.4	69
22	Gene activation during experimental allergic encephalomyelitis. Cloning of new cDNAs. <i>Annals of the New York Academy of Sciences</i> , 1988 , 540, 264-5	6.5	1
21	Immunohistochemical analysis of suppressor-inducer and helper-inducer T cells in multiple sclerosis brain tissue. <i>Annals of the New York Academy of Sciences</i> , 1988 , 540, 306-8	6.5	2
20	Loss of functional suppression is linked to decreases in circulating suppressor-inducer (CD4+ 2H4+) T cells in multiple sclerosis. <i>Annals of the New York Academy of Sciences</i> , 1988 , 540, 330-2	6.5	4
19	Cumulative experience with high-dose intravenous cyclophosphamide and ACTH therapy in chronic progressive multiple sclerosis. <i>Annals of the New York Academy of Sciences</i> , 1988 , 540, 535-6	6.5	3

18	Role of mast cells in peripheral nervous system demyelination. <i>Annals of the New York Academy of Sciences</i> , 1988 , 540, 727-8	6.5	11
17	Type 1 human poliovirus binds to human synaptosomes. <i>Annals of Neurology</i> , 1987 , 21, 64-70	9.4	25
16	In vivo labeling of blood T cells: rapid traffic into cerebrospinal fluid in multiple sclerosis. <i>Annals of Neurology</i> , 1987 , 22, 89-93	9.4	83
15	Antiidiotypic antibody to reovirus binds to neurons and protects from viral infection. <i>Annals of Neurology</i> , 1986 , 19, 555-8	9.4	17
14	Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. <i>Annals of Neurology</i> , 1986 , 19, 578-87	9.4	309
13	Infection of neuronal cell cultures with reovirus mimics in vitro patterns of neurotropism. <i>Annals of Neurology</i> , 1984 , 16, 603-10	9.4	49
12	Immunoregulatory T-cells and lymphocytotoxic antibodies in active multiple sclerosis: weekly analysis over a six-month period. <i>Annals of Neurology</i> , 1983 , 13, 418-25	9.4	85
11	Age dependent susceptibility to Reovirus type 3 encephalitis: role of viral and host factors. <i>Annals of Neurology</i> , 1983 , 13, 602-7	9.4	71
10	Clonally restricted B cells in peripheral blood of multiple sclerosis patients: kappa/lambda staining patterns. <i>Annals of Neurology</i> , 1982 , 11, 408-12	9.4	10
9	Neuroimmunology I: Immunoregulation in neurological disease. <i>Annals of Neurology</i> , 1982 , 11, 437-49	9.4	93
8	Childhood multiple sclerosis: clinical features and demonstration of changes in T cell subsets with disease activity. <i>Annals of Neurology</i> , 1982 , 11, 463-8	9.4	52
7	Biomarkers26-55		
6	Cognitive Dysfunction in Multiple Sclerosis239-262		
5	Future Therapeutic Approaches283-300		
4	Medication Treatment in Multiple Sclerosis181-212		
3	Depression and Other Psychosocial Issues in Multiple Sclerosis263-282		2
2	Predicting Clinical Course163-180		1
1	Symptom Management213-238		1