List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7278192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics, 2022, 14, 626.	2.0	24
2	Targeting Ship2-Sam with peptide ligands: Novel insights from a multidisciplinary approach. Bioorganic Chemistry, 2022, 122, 105680.	2.0	3
3	Design, Synthesis, and Anticancer Activity of a Selenium-Containing Galectin-3 and Galectin-9N Inhibitor. International Journal of Molecular Sciences, 2022, 23, 2581.	1.8	7

Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor (in) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

5	The TBC1D31/praja2 complex controls primary ciliogenesis through PKAâ€directed OFD1 ubiquitylation. EMBO Journal, 2021, 40, e106503.	3.5	15
6	More Is Always Better Than One: The N-Terminal Domain of the Spike Protein as Another Emerging Target for Hampering the SARS-CoV-2 Attachment to Host Cells. International Journal of Molecular Sciences, 2021, 22, 6462.	1.8	14
7	Impact of a Single Point Mutation on the Antimicrobial and Fibrillogenic Properties of Cryptides from Human Apolipoprotein B. Pharmaceuticals, 2021, 14, 631.	1.7	11
8	Exploring the Ability of Cyclic Peptides to Target SAM Domains: A Computational and Experimental Study. ChemBioChem, 2020, 21, 702-711.	1.3	9
9	Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea. Antioxidants, 2020, 9, 703.	2.2	19
10	A Multi-Targeting Approach to Fight SARS-CoV-2 Attachment. Frontiers in Molecular Biosciences, 2020, 7, 186.	1.6	24
11	Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family. Scientific Reports, 2020, 10, 9283.	1.6	11
12	Ultra-rapid glutathionylation of chymotrypsinogen in its molten globule-like conformation: A comparison to archaeal proteins. Scientific Reports, 2020, 10, 8943.	1.6	6
13	Insights into PPARÎ ³ Phosphorylation and Its Inhibition Mechanism. Journal of Medicinal Chemistry, 2020, 63, 4811-4823.	2.9	21
14	Synthesis of diglycosylated (di)sulfides and comparative evaluation of their antiproliferative effect against tumor cell lines: A focus on the nature of sugar-recognizing mediators involved. Carbohydrate Research, 2019, 482, 107740.	1.1	10
15	Molecular basis of the scalp-ear-nipple syndrome unraveled by the characterization of disease-causing KCTD1 mutants. Scientific Reports, 2019, 9, 10519.	1.6	18
16	Investigating the properties of TBA variants with twin thrombin binding domains. Scientific Reports, 2019, 9, 9184.	1.6	17
17	Cystatin B Involvement in Synapse Physiology of Rodent Brains and Human Cerebral Organoids. Frontiers in Molecular Neuroscience, 2019, 12, 195.	1.4	47
18	KCTD1: A novel modulator of adipogenesis through the interaction with the transcription factor AP2α. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158514.	1.2	12

#	Article	IF	CITATIONS
19	A physicochemical investigation on the metal binding properties of TtSmtB, a thermophilic member of the ArsR/SmtB transcription factor family. International Journal of Biological Macromolecules, 2019, 138, 1056-1063.	3.6	7
20	Ubiquitin binds the amyloid \hat{l}^2 peptide and interferes with its clearance pathways. Chemical Science, 2019, 10, 2732-2742.	3.7	46
21	Molecular insights into the role of the polyalanine region in mediating <scp>PHOX</scp> 2B aggregation. FEBS Journal, 2019, 286, 2505-2521.	2.2	9
22	Focusing on the functional characterization of the anserinase from Oreochromis niloticus. International Journal of Biological Macromolecules, 2019, 130, 158-165.	3.6	2
23	Design and analysis of EphA2-SAM peptide ligands: A multi-disciplinary screening approach. Bioorganic Chemistry, 2019, 84, 434-443.	2.0	11
24	A selective α v β 5 integrin antagonist hidden into the anophelin family protein cE5 from the malaria vector Anopheles gambiae. Peptide Science, 2018, 110, e24054.	1.0	7
25	Biochemical characterization of a novel thermostable β-glucosidase from Dictyoglomus turgidum. International Journal of Biological Macromolecules, 2018, 113, 783-791.	3.6	54
26	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1–TGF-β–OTX2–SNAIL via PTEN inhibition. Brain, 2018, 141, 1300-1319.	3.7	22
27	Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chemical Science, 2018, 9, 3290-3298.	3.7	18
28	The essential player in adipogenesis GRP78 is a novel KCTD15 interactor. International Journal of Biological Macromolecules, 2018, 115, 469-475.	3.6	17
29	MucR binds multiple target sites in the promoter of its own gene and is a heatâ€stable protein: Is MucR a Hâ€ <scp>NS</scp> â€like protein?. FEBS Open Bio, 2018, 8, 711-718.	1.0	15
30	Biochemical characterization of a thermostable endomannanase/endoglucanase from Dictyoglomus turgidum. Extremophiles, 2018, 22, 131-140.	0.9	19
31	Cell milieu significantly affects the fate of AApoAl amyloidogenic variants: predestination or serendipity?. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 377-384.	1.1	15
32	Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation. Scientific Reports, 2018, 8, 17238.	1.6	14
33	Sam domain-based stapled peptides: Structural analysis and interaction studies with the Sam domains from the EphA2 receptor and the lipid phosphatase Ship2. Bioorganic Chemistry, 2018, 80, 602-610.	2.0	17
34	Elucidating the role of the pLG72 R30K substitution in schizophrenia susceptibility. FEBS Letters, 2017, 591, 646-655.	1.3	8
35	A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2342-2353.	1.1	26
36	Insights into the anticancer properties of the first antimicrobial peptide from Archaea. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2155-2164.	1.1	29

#	Article	IF	CITATIONS
37	Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1095-1104.	1.1	3
38	Functional analyses yield detailed insight into the mechanism of thrombin inhibition by the antihemostatic salivary protein cE5 from Anopheles gambiae. Journal of Biological Chemistry, 2017, 292, 12632-12642.	1.6	20
39	Novel propanamides as fatty acid amide hydrolase inhibitors. European Journal of Medicinal Chemistry, 2017, 136, 523-542.	2.6	10
40	The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors. Scientific Reports, 2017, 7, 17474.	1.6	17
41	Ml proteins from Mesorhizobium loti and MucR from Brucella abortus: an AT-rich core DNA-target site and oligomerization ability. Scientific Reports, 2017, 7, 15805.	1.6	13
42	Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase. Microbial Cell Factories, 2017, 16, 28.	1.9	38
43	The <scp>BTB</scp> domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states. FEBS Letters, 2016, 590, 1663-1671.	1.3	25
44	Exploring the binding of d(GGGT)4 to the HIV-1 integrase: An approach to investigate G-quadruplex aptamer/target protein interactions. Biochimie, 2016, 127, 19-22.	1.3	25
45	Proteins involved in sleep homeostasis: Biophysical characterization of INC and its partners. Biochimie, 2016, 131, 106-114.	1.3	6
46	Regulating levels of the neuromodulator <scp>d</scp> â€serine in human brain: structural insight into pLG72 and <scp>d</scp> â€amino acid oxidase interaction. FEBS Journal, 2016, 283, 3353-3370.	2.2	15
47	Targeting EphA2â€Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues. ChemBioChem, 2016, 17, 2179-2188.	1.3	14
48	A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS Journal, 2016, 283, 2115-2131.	2.2	54
49	A trans-kingdom antimicrobial peptide targeting cystic fibrosis pathogens. Journal of Genetic Syndromes & Gene Therapy, 2016, 7, .	0.2	0
50	The identification of a novel Sulfolobus islandicus CAMP-like peptide points to archaeal microorganisms as cell factories for the production of antimicrobial molecules. Microbial Cell Factories, 2015, 14, 126.	1.9	24
51	Peptide Fragments of Odin‧am1: Conformational Analysis and Interaction Studies with EphA2‧am. ChemBioChem, 2015, 16, 1629-1636.	1.3	13
52	Cullin3 - BTB Interface: A Novel Target for Stapled Peptides. PLoS ONE, 2015, 10, e0121149.	1.1	33
53	Cullin 3 Recognition Is Not a Universal Property among KCTD Proteins. PLoS ONE, 2015, 10, e0126808.	1.1	43
54	A therapeutic approach to treat prostate cancer by targeting Nm23-H1/h-Prune interaction. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 257-269.	1.4	20

#	Article	IF	CITATIONS
55	Insight into conformational modification of alphaâ€synuclein in the presence of neuronal whole cells and of their isolated membranes. FEBS Letters, 2015, 589, 798-804.	1.3	6
56	Interaction of the N-(3-Methylpyridin-2-yl)amide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode. PLoS ONE, 2015, 10, e0142711.	1.1	12
57	Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin. PLoS ONE, 2014, 9, e112082.	1.1	7
58	Structural and functional studies of Stf76 from the Sulfolobus islandicus plasmid–virus pSSVx: a novel peculiar member of the winged helix–turn–helix transcription factor family. Nucleic Acids Research, 2014, 42, 5993-6011.	6.5	24
59	Sulfolobus solfataricus thiol redox puzzle: characterization of an atypical protein disulfide oxidoreductase. Extremophiles, 2014, 18, 219-228.	0.9	13
60	Molecular recognition of Cullin3 by KCTDs: Insights from experimental and computational investigations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1289-1298.	1.1	31
61	Functional and structural characterization of protein disulfide oxidoreductase from Thermus thermophilus HB27. Extremophiles, 2014, 18, 723-731.	0.9	4
62	A biophysical characterization of the folded domains of KCTD12: insights into interaction with the GABA _{B2} receptor. Journal of Molecular Recognition, 2013, 26, 488-495.	1.1	26
63	A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2071-2079.	1.1	48
64	Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1572-1580.	1.1	10
65	Heterotypic Sam–Sam Association between Odinâ€Sam1 and Arap3â€Sam: Binding Affinity and Structural Insights. ChemBioChem, 2013, 14, 100-106.	1.3	19
66	Thermal and Chemical Stability of Two Homologous POZ/BTB Domains of KCTD Proteins Characterized by a Different Oligomeric Organization. BioMed Research International, 2013, 2013, 1-8.	0.9	13
67	Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the <scp>L</scp> , <scp>D</scp> -transpeptidase Ldt _{Mt1} from <i>Mycobacterium tuberculosis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 253-256	0.7	5
68	Biochemical phenotype of a common diseaseâ€causing mutation and a possible therapeutic approach for the phosphomannomutase 2â€associated disorder of glycosylation. Molecular Genetics & Genomic Medicine, 2013, 1, 32-44.	0.6	20
69	Structures of free and inhibited forms of theL,D-transpeptidase LdtMt1fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1697-1706.	2.5	58
70	Mapping Functional Interaction Sites of Human Prune Câ€Terminal Domain by NMR Spectroscopy in Human Cell Lysates. Chemistry - A European Journal, 2013, 19, 12217-12220.	1.7	12
71	Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction. Scientific Reports, 2013, 3, 1351.	1.6	34
72	gH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins. International Journal of Nanomedicine, 2013, 8, 2555.	3.3	20

#	Article	IF	CITATIONS
73	Responding to toxic compounds: a genomic and functional overview of Archaea. Frontiers in Bioscience - Landmark, 2013, 18, 165.	3.0	31
74	Solution Structure of the First Sam Domain of Odin and Binding Studies with the EphA2 Receptor. Biochemistry, 2012, 51, 2136-2145.	1.2	34
75	Mapping key interactions in the dimerization process of HBHA from <i>Mycobacterium tuberculosis</i> , insights into bacterial agglutination. FEBS Letters, 2012, 586, 659-667.	1.3	15
76	Molecular organization of the cullin E3 ligase adaptor KCTD11. Biochimie, 2011, 93, 715-724.	1.3	50
77	Heparin-binding hemagglutinin HBHA from Mycobacterium tuberculosis affects actin polymerisation. Biochemical and Biophysical Research Communications, 2011, 410, 339-344.	1.0	28
78	C68 from the <i>Sulfolobus islandicus</i> plasmid–virus pSSVx is a novel member of the AbrB-like transcription factor family. Biochemical Journal, 2011, 435, 157-166.	1.7	24
79	Design, synthesis and characterization of a peptide able to bind proteins of the KCTD family: implications for KCTD—cullin 3 recognition. Journal of Peptide Science, 2011, 17, 373-376.	0.8	15
80	Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Analysis of the Resuscitation Promoting Factor Interacting Protein RipA from M. tuberculosis. Protein and Peptide Letters, 2010, 17, 70-73.	0.4	10
81	Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cellular and Molecular Life Sciences, 2010, 67, 3797-3814.	2.4	28
82	Structure and Functional Regulation of RipA, a Mycobacterial Enzyme Essential for Daughter Cell Separation. Structure, 2010, 18, 1184-1190.	1.6	73
83	Dimerisation and structural integrity of Heparin Binding Hemagglutinin A from <i>Mycobacterium tuberculosis</i> : Implications for bacterial agglutination. FEBS Letters, 2010, 584, 1091-1096.	1.3	16
84	NMR backbone dynamics studies of human PED/PEAâ€15 outline protein functional sites. FEBS Journal, 2010, 277, 4229-4240.	2.2	10
85	Histone deacetylase and Cullin3–RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nature Cell Biology, 2010, 12, 132-142.	4.6	292
86	Corrigendum for Pedone E, Limauro D, and Bartolucci S. The Machinery for Oxidative Protein Folding in Thermophiles. <i>Antioxid Redox Signal</i> 10:157–169, 2008. Antioxidants and Redox Signaling, 2010, 12, 171-179.	2.5	2
87	Exploring the catalytic mechanism of the first dimeric Bcp: Functional, structural and docking analyses of Bcp4 from Sulfolobus solfataricus. Biochimie, 2010, 92, 1435-1444.	1.3	20
88	Dynamical properties of cold shock protein A from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2010, 402, 693-698.	1.0	13
89	High hydrostatic pressure-induced conformational changes in protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A Fourier-transform infrared spectroscopic study. Molecular BioSystems, 2010, 6, 2015.	2.9	9
90	Insights into the catalytic mechanism of the Bcp family: Functional and structural analysis of Bcp1 from <i>Sulfolobus solfataricus</i> . Proteins: Structure, Function and Bioinformatics, 2009, 76, 995-1006.	1.5	25

#	Article	IF	CITATIONS
91	Crystal Structure of the Resuscitation-Promoting Factor ΔDUFRpfB from M. tuberculosis. Journal of Molecular Biology, 2009, 385, 153-162.	2.0	72
92	Peroxiredoxins as cellular guardians in <i>Sulfolobus solfataricus</i> – characterization of Bcp1, Bcp3 and Bcp4. FEBS Journal, 2008, 275, 2067-2077.	2.2	35
93	The Machinery for Oxidative Protein Folding in Thermophiles. Antioxidants and Redox Signaling, 2008, 10, 157-170.	2.5	31
94	Evidence for an Elongated Dimeric Structure of Heparin-Binding Hemagglutinin from Mycobacterium tuberculosis. Journal of Bacteriology, 2008, 190, 4749-4753.	1.0	28
95	Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites. Protein Engineering, Design and Selection, 2008, 22, 19-26.	1.0	17
96	The prokaryotic Cys ₂ His ₂ zinc-finger adopts a novel fold as revealed by the NMR structure of <i>Agrobacterium tumefaciens</i> Ros DNA-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17341-17346.	3.3	47
97	Expression, purification, crystallization and preliminary X-ray crystallographic analysis of a resuscitation-promoting factor fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 870-873.	0.7	6
98	Insights on a New PDI-like Family: Structural and Functional Analysis of a Protein Disulfide Oxidoreductase from the Bacterium Aquifex aeolicus. Journal of Molecular Biology, 2006, 356, 155-164.	2.0	26
99	A Novel Member of the Protein Disulfide Oxidoreductase Family from Aeropyrum pernix K1: Structure, Function and Electrostatics. Journal of Molecular Biology, 2006, 362, 743-752.	2.0	21
100	Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress. FEBS Journal, 2006, 273, 721-731.	2.2	36
101	Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus. FEBS Journal, 2006, 273, 5407-5420.	2.2	38
102	Crystallization and preliminary X-ray diffraction studies of a protein disulfide oxidoreductase fromAeropyrum pernixK1. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 335-336.	0.7	4
103	Temperature-, SDS-, and pH-Induced Conformational Changes in Protein Disulfide Oxidoreductase from the ArchaeonPyrococcusfuriosus:Â A Dynamic Simulation and Fourier Transform Infrared Spectroscopic Study. Journal of Proteome Research, 2005, 4, 1972-1980.	1.8	16
104	Sensing and adapting to environmental stress: the archaeal tactic. Frontiers in Bioscience - Landmark, 2004, 9, 2909.	3.0	37
105	Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus. FEBS Journal, 2004, 271, 3437-3448.	0.2	47
106	Crystallization and preliminary X-ray diffraction studies of a protein disulfide oxidoreductase fromAquifex aeolicus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2076-2077.	2.5	6
107	Solution Structure and Backbone Dynamics of the K18G/R82EAlicyclobacillus acidocaldariusThioredoxin Mutant:À A Molecular Analysis of Its Reduced Thermal Stabilityâ€,‡. Biochemistry, 2004, 43, 6043-6058.	1.2	22
108	High-level expression of Aliciclobacillus acidocaldarius thioredoxin in Pichia pastoris and Bacillus subtilis. Protein Expression and Purification, 2003, 30, 179-184.	0.6	7

#	Article	IF	CITATIONS
109	An Integrated Structural and Computational Study of the Thermostability of Two Thioredoxin Mutants from Alicyclobacillus acidocaldarius. Journal of Bacteriology, 2003, 185, 4285-4289.	1.0	8
110	Structural and thermal stability analysis of Escherichia coli and Alicyclobacillus acidocaldarius thioredoxin revealed a molten globule-like state in thermal denaturation pathway of the proteins: an infrared spectroscopic study. Biochemical Journal, 2003, 373, 875-883.	1.7	37
111	A single point mutation (Glu85Arg) increases the stability of the thioredoxin from Escherichia coli. Protein Engineering, Design and Selection, 2001, 14, 255-260.	1.0	28
112	NMR solution structure of a novel thioredoxin from Bacillus acidocaldarius. FEBS Journal, 2000, 267, 403-413.	0.2	22
113	Prediction and experimental testing of Bacillus acidocaldarius thioredoxin stability1. Biochemical Journal, 1999, 339, 309-317.	1.7	18
114	Prediction and experimental testing of Bacillus acidocaldarius thioredoxin stability1. Biochemical Journal, 1999, 339, 309.	1.7	9
115	Prediction and experimental testing of Bacillus acidocaldarius thioredoxin stability. Biochemical Journal, 1999, 339 (Pt 2), 309-17.	1.7	7
116	Computational Analysis of the Thermal Stability in Thioredoxins: A Molecular Dynamics Approach. Journal of Biomolecular Structure and Dynamics, 1998, 16, 437-446.	2.0	14
117	Thioredoxin from Bacillus acidocaldarius: characterization, high-level expression in Escherichia coli and molecular modelling. Biochemical Journal, 1997, 328, 277-285.	1.7	27
118	Conformational studies of retro-inverso peptides: The crystal and molecular structure of the hydantoin from H-Ala-G-Ala-mGly-OBzl. Biopolymers, 1995, 36, 659-667.	1.2	11